11,399 research outputs found

    Adsorption preference reversal phenomenon from multisite-occupancy theory fortwo-dimensional lattices

    Get PDF
    The statistical thermodynamics of polyatomic species mixtures adsorbed on two-dimensional substrates was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the coverage and temperature dependence of the Helmholtz free energy and chemical potential are given. The formalism leads to the exact statistical thermodynamics of binary mixtures adsorbed in one dimension, provides a close approximation for two-dimensional systems accounting multisite occupancy and allows to discuss the dimensionality and lattice structure effects on the known phenomenon of adsorption preference reversal.Comment: 13 pages, 4 figure

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices

    Get PDF
    Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel k-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density \theta_c, which increases linearly with the magnitude of the lateral interactions.Comment: 7 pages, 6 figure

    Real-time multiframe blind deconvolution of solar images

    Full text link
    The quality of images of the Sun obtained from the ground are severely limited by the perturbing effect of the turbulent Earth's atmosphere. The post-facto correction of the images to compensate for the presence of the atmosphere require the combination of high-order adaptive optics techniques, fast measurements to freeze the turbulent atmosphere and very time consuming blind deconvolution algorithms. Under mild seeing conditions, blind deconvolution algorithms can produce images of astonishing quality. They can be very competitive with those obtained from space, with the huge advantage of the flexibility of the instrumentation thanks to the direct access to the telescope. In this contribution we leverage deep learning techniques to significantly accelerate the blind deconvolution process and produce corrected images at a peak rate of ~100 images per second. We present two different architectures that produce excellent image corrections with noise suppression while maintaining the photometric properties of the images. As a consequence, polarimetric signals can be obtained with standard polarimetric modulation without any significant artifact. With the expected improvements in computer hardware and algorithms, we anticipate that on-site real-time correction of solar images will be possible in the near future.Comment: 16 pages, 12 figures, accepted for publication in A&
    corecore