5 research outputs found

    Control of crystallinity of vinylene-linked two-dimensional conjugated polymers by rational monomer design

    Get PDF
    The interest in two-dimensional conjugated polymers (2D CPs) has increased significantly in recent years. In particular, vinylene-linked 2D CPs with fully in-plane sp2-carbon-conjugated structures, high thermal and chemical stability, have become the focus of attention. Although the Horner-Wadsworth-Emmons (HWE) reaction has been recently demonstrated in synthesizing vinylene-linked 2D CPs, it remains largely unexplored due to the challenge in synthesis. In this work, we reveal the control of crystallinity of 2D CPs during the solvothermal synthesis of 2D-poly(phenylene-quinoxaline-vinylene)s (2D-PPQVs) and 2D-poly(phenylene-vinylene)s through the HWE polycondensation. The employment of fluorinated phosphonates and rigid aldehyde building blocks is demonstrated as crucial factors in enhancing the crystallinity of the obtained 2D CPs. Density functional theory (DFT) calculations reveal the critical role of the fluorinated phosphonate in enhancing the reversibility of the (semi)reversible C−C single bond formation

    Thiophene-Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Co-Catalyst-Free Photoelectrochemical Water Reduction in Alkaline Medium

    Get PDF
    Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b′]dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2′,3′-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 μA cm−2 and 120 μA cm−2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cβ of the outer thiophene rings of pDTT are the water dissociation active sites, while the −C≡C− bonds function as the active sites for hydrogen evolution

    Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis

    No full text
    The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined

    Vinylene-Linked 2D Conjugated Covalent Organic Frameworks by Wittig Reactions

    Get PDF
    Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2CO3) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2 V−1 s−1, as revealed by non-contact terahertz (THz) spectroscopy
    corecore