243 research outputs found

    New results from the NA57 experiment

    Full text link
    We report results from the experiment NA57 at CERN SPS on hyperon production at midrapidity in Pb-Pb collisions at 158 AA GeV/cc and 40 AA GeV/cc. Λ\Lambda, Ξ\Xi and Ω\Omega yields are compared with those from the STAR experiment at the higher energy of the BNL RHIC. Λ\Lambda, Ξ\Xi, Ω\Omega\ and preliminary KS0K_S^0 transverse mass spectra are presented and interpreted within the framework of a hydro-dynamical blast wave model.Comment: 8 pages, 3 figures, contribution to the proceedings of The XXXVIIIth Rencontres de Moriond "QCD and High Energy Hadronic Interactions

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Strangeness enhancement at mid-rapidity in Pb-Pb collisions at 158 GeV/c

    Get PDF
    Ks0K^{0}_{s}, Λ\Lambda, Ξ\Xi, Ω\Omega and negative particle yields and transverse mass spectra have been measured at central rapidity in Pb-Pb and p-Pb collisions at 158 AA GeV/cc. The yields in Pb-Pb interactions % are presented as a function of the collision centrality and compared with those obtained from p-Pb collisions. Strangeness enhancement in Pb-Pb relative to p-Pb collisions increases with the strangeness content of the particle. Going from p-Pb to Pb-Pb, the strange particle yields increase faster than linearly with the number of participants NpartN_{part} up to Npart100N_{part} \approx 100, thereafter the increase becomes %linear with NpartN_{part}. Yields are studied as a function of the number of nucleons participating in the collision NpartN_{part}, which is estimated with the Glauber model. From p-Pb to Pb-Pb collisions the particle yields per participant increase substantially. The enhancement is more pronounced for multistrange particles, and exceeds an order of magnitude for the Ω\Omega. For a number of participants, NpartN_{part}, greater than 100100, however, all yields per participant appear to be constant

    Results on cascade production in lead-lead interactions from the NA57 experiment

    Get PDF
    The NA57 experiment has been designed to study the production of strange and multi-strange particles in Pb-Pb and p-Be collisions at the CERN SPS. The predecessor experiment WA97 has measured an enhanced abundance of strange particles in Pb-Pb collisions relative to p-A reactions at 160 GeV/c per nucleon beam momentum. NA57 has extended the WA97 measurements to investigate the evolution of the strangeness enhancement pattern as a function of the beam energy and over a wider centrality range. In this paper, we report results on cascade production for about the 60% most central collisions at 160 GeV/c per nucleon

    Determination of the number of wounded nucleons in Pb+Pb collisions at 158 A GeV/c

    Get PDF
    The charged particle multiplicity distributions measured by two experiments, WA97 and NA57, in Pb+Pb collisions at 158 A GeV/c have been analyzed in the framework of the wounded nucleon model (WNM). We obtain a good description of the data within the centrality range of our samples. This allows us to make use of the measured multiplicities to estimate the number of wounded nucleons of the collision

    EUSO-SPB1 mission and science

    Get PDF
    The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
    corecore