4 research outputs found

    Reconstrução de imagens de ultrassom utilizando regularização l1 através de mínimos quadrados iterativamente reponderados e gradiente conjugado

    Get PDF
    This work presents an inverse problem based method for ultrasound image reconstruction which uses the L2-norm (or euclidean norm) as a penalty for the error between the data and the solution, and the L1-norm as a regularization penalty. The motivation for the use of of L1 regularization is the sparsity promoting property of this type of regularization. The sparsity of L1 regularization circumvents the problem of excess of artifatcts that is observed in other approaches of inverse problem based reconstrucion in ultrasound. Such problem is mainly a consequence of the limitation in the discrete representation of a continuous object in the acquisition model. Due to this limitation, reflecting objects in the imaged area are often localized in positions that do not correspond precisely to one of the positions in the discrete model, therefore generating data that do not correspond to the model data. The formulations of the problem with L2 regularization and with L1 regularization are presented and compared in geometric and Bayesian terms. The optimization algorithm proposed is an implementation of Iteratively Reweighted Least Squares (IRLS) and uses the Conjugate Gradient (CG) method inside each iteration, thus being called IRLS-CG. Simulations with computer phantoms are realized showing that the proposed method allows for the reconstruction of images, without observable artifacts, from data with reflectors located in non-modeled positions. Simulations also show a better spatial resolution in the proposed method when compared to the delay-and-sum (DAS) algorithm. It was also observed better computational performance of CG when compared to the matrix inversion in the iterations of IRLS.Este trabalho apresenta um método de reconstrução de imagens de ultrassom por problemas inversos que tem como penalidade para o erro entre solução e dados a norma L2, ou euclidiana, e como penalidade de regularização a norma L1. A motivação para o uso da regularização L1 é que se trata de um tipo de regularização promotora de esparsidade na solução. A esparsidade da regularização L1 contorna o problema de excesso do artefatos, observado em outras implementações de reconstrução por problemas inversos em ultrassom. Este problema é consequência principalmente da limitação da representação discreta do objeto contínuo no modelo de aquisição. Por conta desta limitação, objetos refletores na área imageada quase sempre localizam-se em posições que não correspondem precisamente a uma das posições do modelo discreto, gerando dados que não correspondem aos dados modelados. As formulações do problema com regularização L2 e com regularização L1 são apresentadas e comparadas dos pontos de vista geométrico e Bayesiano. O algoritmo de otimização proposto é uma implementação do algoritmo Iteratively Reweighted Least Squares (IRLS) e utiliza o método do Gradiente Conjugado (CG - Conjugate Gradient) a cada iteração, sendo chamado de IRLS-CG. São realizadas simulações com phantoms computacionais que mostram que o método permite reconstruir imagens a partir da aquisição de dados com refletores em posições não modeladas sem a observação de artefatos. As simulações também mostram melhor resolução espacial do método proposto com relação ao algoritmo delay-and-sum (DAS). Também se observou melhor desempenho computacional do CG com relação à matriz inversa nas iterações do IRLS

    Sparse ultrasound imaging via linear approximation of the acquisition manifold and non-convex greedy pursuit

    Get PDF
    Model-based image and signal reconstruction has brought important improvements in terms of contrast and spatial resolution to applications such as magnetic resonance imaging and emission computed tomography. However, their use for pulse-echo techniques like ultrasound imaging is limited by the fact that model-based algorithms assume a finite grid of possible locations of scatterers in a medium -- an assumption that does not reflect the continuous nature of real world objects and creates a problem known as off-grid deviation. To cope with this problem, we present a method of dictionary expansion and constrained reconstruction that approximates the continuous manifold of all possible scatterer locations within a region of interest (ROI). The creation of the expanded dictionary is based on a highly coherent sampling of the ROI, followed by a rank reduction of the corresponding data that encompasses two possible approximation criteria: one based on singular-value decomposition (SVD) and one minimize-maximum (Minimax). Although we develop here a formulation for two-dimensional sparse imaging problems, it can be readily extended to any D dimensions. We develop a greedy algorithm, based on the Orthogonal Matching Pursuit (OMP), that uses a correlation-based non-convex constraint set that allows for the division of the ROI into cells of any size. To evaluate the performance of the proposed method, we present results of two-dimensional ultrasound image reconstructions with simulated data in a nondestructive testing application. The proposed method succeeds at reconstructing sparse images from noisy measurements and provides higher accuracy than previous approaches based on regular discrete models. Results also confirm a theoretical expectation that the Minimax dictionary outperforms the SVD dictionary on the estimation of the cardinality of the solution.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Petróleo Brasileiro (Petrobrás)Nas últimas décadas, as técnicas de reconstrução de imagens e sinais baseadas em modelos possibilitaram importantes melhorias em termos de contraste e resolução espacial em aplicações como ressonância magnética e tomografia computadorizada. No entanto, o uso de técnicas desse tipo em aplicações de pulso-eco como ultrassom é limitado pelo fato delas pressuporem uma grade finita de possíveis localizações para os refletores existentes num meio -- um pressuposto que vai contra a natureza contínua dos objetos do mundo real, o que cria um problema conhecido como desvio da grade. Com o objetivo de superar esse problema, este trabalho apresenta um método de expansão de dicionário e de reconstrução com restrições que aproxima a variedade (comumente referida como manifold) contínua dos dados de aquisição formada por todas as localizações possíveis de refletores ao longo de uma região de interesse (RDI). A criação do dicionário expandido baseia-se numa amostragem altamente coerente da RDI, seguida de uma redução de posto matricial nos dados correspondentes para a qual são propostos dois critérios: um baseado em decomposição em valores singulares (SVD) e um baseado em minimização do máximo (Minimax). Embora a formulação seja aqui desenvolvida para o caso de 2 dimensões, a mesma é extensível para quaisquer D dimensões. É proposto um algoritmo baseado no Orthogonal Matching Pursuit (OMP), que usa um conjunto de restrições não convexas baseadas em correlação e permite que a RDI seja dividida em células de qualquer tamanho. O método proposto é avaliado através da reconstrução de imagens de ultrassom em 2 dimensões a partir de dados simulados para uma aplicação de ensaios não destrutivos. O método proposto obteve êxito na reconstrução de imagens esparsas a partir de dados de aquisição ruidosos e possibilitou maior acurácia do que abordagens concorrentes baseadas em modelos discretos sem expansão do dicionário. Os resultados confirmaram também uma expectativa teórica de que o dicionário Minimax supera o dicionário SVD com relação à estimativa de cardinalidade da solução

    Sparse Ultrasound Imaging via Manifold Low-Rank Approximation and Non-Convex Greedy Pursuit

    No full text
    Model-based image reconstruction has improved contrast and spatial resolution in imaging applications such as magnetic resonance imaging and emission computed tomography. However, these methods have not succeeded in pulse-echo applications like ultrasound imaging due to the typical assumption of a finite grid of possible scatterer locations in a medium–an assumption that does not reflect the continuous nature of real world objects and creates a problem known as off-grid deviation. To cope with this problem, we present a method of dictionary expansion and constrained reconstruction that approximates the continuous manifold of all possible scatterer locations within a region of interest. The expanded dictionary is created using a highly coherent sampling of the region of interest, followed by a rank reduction procedure. We develop a greedy algorithm, based on the Orthogonal Matching Pursuit, that uses a correlation-based non-convex constraint set that allows for the division of the region of interest into cells of any size. To evaluate the performance of the method, we present results of two-dimensional ultrasound imaging with simulated data in a nondestructive testing application. Our method succeeds in the reconstructions of sparse images from noisy measurements, providing higher accuracy than previous approaches based on regular discrete models

    Effects of Thermal Gradients in High-Temperature Ultrasonic Non-Destructive Tests

    No full text
    Ultrasonic inspection techniques and non-destructive tests are widely applied in evaluating products and equipment in the oil, petrochemical, steel, naval, and energy industries. These methods are well established and efficient for inspection procedures at room temperature. However, errors can be observed in the positioning and sizing of the flaws when such techniques are used during inspection procedures under high working temperatures. In such situations, the temperature gradients generate acoustic anisotropy and consequently distortion of the ultrasonic beams. Failure to consider such distortions in ultrasonic signals can result, in extreme situations, in mistaken decision making by inspectors and professionals responsible for guaranteeing product quality or the integrity of the evaluated equipment. In this scenario, this work presents a mathematical tool capable of mitigating positioning errors through the correction of focal laws. For the development of the tool, ray tracing concepts are used, as well as a model of heat propagation in solids and an experimentally defined linear approximation of dependence between sound speed and temperature. Using the focal law correction tool, the relative firing delays of the active elements are calculated considering the temperature gradients along the sonic path, and the results demonstrate a reduction of more than 68% in the error of flaw positioning
    corecore