115 research outputs found

    Spontaneous emission of an atom near an oscillating mirror

    Get PDF
    We investigate the spontaneous emission of one atom placed near an oscillating reflecting plate. We consider the atom modeled as a two-level system, interacting with the quantum electromagnetic field in the vacuum state, in the presence of the oscillating mirror. We suppose that the plate oscillates adiabatically, so that the time-dependence of the interaction Hamiltonian is entirely enclosed in the time-dependent mode functions, satisfying the boundary conditions at the plate surface, at any given time. Using time-dependent perturbation theory, we evaluate the transition rate to the ground-state of the atom, and show that it depends on the time-dependent atom-plate distance. We also show that the presence of the oscillating mirror significantly affects the physical features of the spontaneous emission of the atom, in particular the spectrum of the emitted radiation. Specifically, we find the appearance of two symmetric lateral peaks in the spectrum, not present in the case of a static mirror, due to the modulated environment. The two lateral peaks are separated from the central peak by the modulation frequency, and we discuss the possibility to observe them with actual experimental techniques of dynamical mirrors and atomic trapping. Our results indicate that a dynamical (i.e., time-modulated) environment can give new possibilities to control and manipulate also other radiative processes of two or more atoms or molecules nearby, for example their cooperative decay or the resonant energy transfer

    Vacuum field correlations and three-body Casimir-Polder potential with one excited atom

    Full text link
    The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.Comment: 9 page

    Casimir-Polder potentials as entanglement probe

    Full text link
    We have considered the interaction of a pair of spatially separated two-level atoms with the electromagnetic field in its vacuum state and we have analyzed the amount of entanglement induced between the two atoms by the non local field fluctuations. This has allowed us to characterize the quantum nature of the non local correlations of the electromagnetic field vacuum state as well as to link the induced quantum entanglement with Casimir-Polder potentials.Comment: Published on Europhysics Letters 78 (2007) 3000

    Nonequilibrium dressing in a cavity with a movable reflecting mirror

    Get PDF
    We consider a movable mirror coupled to a one-dimensional massless scalar field in a cavity. Both the field and the mirror's mechanical degrees of freedom are described quantum-mechanically, and they can interact each other via the radiation pressure operator. We investigate the dynamical evolution of mirror and field starting from a nonequilibrium initial state, and their local interaction which brings the system to a stationary configuration for long times. This allows us to study the time-dependent dressing process of the movable mirror interacting with the field, and its dynamics leading to a local equilibrium dressed configuration. Also, in order to explore the effect of the radiation pressure on both sides of the movable mirror, we generalize the effective field-mirror Hamiltonian and previous results to the case of two cavities sharing the same mobile boundary. This leads us to address, in the appropriate limit, the dynamical dressing problem of a single mobile wall, bounded by a harmonic potential, in the vacuum space.Comment: 10 pages, 4 figure

    Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect

    Full text link
    We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerated atoms, prepared in a correlated Bell-type state, and interacting with the electromagnetic field in the vacuum state, separating vacuum fluctuations and radiation reaction contributions, both in the free-space and in the presence of a perfectly reflecting plate. We show that nonthermal effects of acceleration manifest in the resonance interaction, yielding a change of the distance dependence of the resonance interaction energy. This suggests that the equivalence between temperature and acceleration does not apply to all radiative properties of accelerated atoms. To further explore this aspect, we evaluate the resonance interaction between two atoms in non inertial motion in the coaccelerated (Rindler) frame and show that in this case the assumption of an Unruh temperature for the field is not required for a complete equivalence of locally inertial and coaccelerated points of views.Comment: 8 pages, Proceedings of the Eighth International Workshop DICE 2016 Spacetime - Matter - Quantum Mechanic

    Experimental approximation of the Jones polynomial with DQC1

    Full text link
    We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state nuclear magnetic resonance quantum information processor. This is the first experimental implementation of a complete problem for the deterministic quantum computation with one quantum bit model of quantum computation, which uses a single qubit accompanied by a register of completely random states. The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that for the restricted case of knots whose braid representations have four strands and exactly three crossings, identifying distinct knots is possible 91% of the time.Comment: 5 figures. Version 2 changes: published version, minor errors corrected, slight changes to improve readabilit

    Nonlocal field correlations and dynamical Casimir-Polder forces between one excited- and two ground-state atoms

    Full text link
    The problem of nonlocality in the dynamical three-body Casimir-Polder interaction between an initially excited and two ground-state atoms is considered. It is shown that the nonlocal spatial correlations of the field emitted by the excited atom during the initial part of its spontaneous decay may become manifest in the three-body interaction. The observability of this new phenomenon is discussed.Comment: 17 pages, 1 figure, sub. to Phys. Rev.

    Casimir-Polder interatomic potential between two atoms at finite temperature and in the presence of boundary conditions

    Full text link
    We evaluate the Casimir-Polder potential between two atoms in the presence of an infinite perfectly conducting plate and at nonzero temperature. In order to calculate the potential, we use a method based on equal-time spatial correlations of the electric field, already used to evaluate the effect of boundary conditions on interatomic potentials. This method gives also a transparent physical picture of the role of a finite temperature and boundary conditions on the Casimir-Polder potential. We obtain an analytical expression of the potential both in the near and far zones, and consider several limiting cases of interest, according to the values of the parameters involved, such as atom-atom distance, atoms-wall distance and temperature.Comment: 11 page

    Vacuum local and global electromagnetic self-energies for a point-like and an extended field source

    Full text link
    We consider the electric and magnetic energy densities (or equivalently field fluctuations) in the space around a point-like field source in its ground state, after having subtracted the spatially uniform zero-point energy terms, and discuss the problem of their singular behavior at the source's position. We show that the assumption of a point-like source leads, for a simple Hamiltonian model of the interaction of the source with the electromagnetic radiation field, to a divergence of the renormalized electric and magnetic energy density at the position of the source. We analyze in detail the mathematical structure of such singularity in terms of a delta function and its derivatives. We also show that an appropriate consideration of these singular terms solves an apparent inconsistency between the total field energy and the space integral of its density. Thus the finite field energy stored in these singular terms gives an important contribution to the self-energy of the source. We then consider the case of an extended source, smeared out over a finite volume and described by an appropriate form factor. We show that in this case all divergences in local quantities such as the electric and the magnetic energy density, as well as any inconsistency between global and space-integrated local self-energies, disappear.Comment: 8 pages. The final publication is available at link.springer.co
    • …
    corecore