We discuss different physical effects related to the uniform acceleration of
atoms in vacuum, in the framework of quantum electrodynamics. We first
investigate the van der Waals/Casimir-Polder dispersion and resonance
interactions between two uniformly accelerated atoms in vacuum. We show that
the atomic acceleration significantly affects the van der Waals force, yielding
a different scaling of the interaction with the interatomic distance and an
explicit time dependence of the interaction energy. We argue how these results
could allow for an indirect detection of the Unruh effect through dispersion
interactions between atoms. We then consider the resonance interaction between
two accelerated atoms, prepared in a correlated Bell-type state, and
interacting with the electromagnetic field in the vacuum state, separating
vacuum fluctuations and radiation reaction contributions, both in the
free-space and in the presence of a perfectly reflecting plate. We show that
nonthermal effects of acceleration manifest in the resonance interaction,
yielding a change of the distance dependence of the resonance interaction
energy. This suggests that the equivalence between temperature and acceleration
does not apply to all radiative properties of accelerated atoms. To further
explore this aspect, we evaluate the resonance interaction between two atoms in
non inertial motion in the coaccelerated (Rindler) frame and show that in this
case the assumption of an Unruh temperature for the field is not required for a
complete equivalence of locally inertial and coaccelerated points of views.Comment: 8 pages, Proceedings of the Eighth International Workshop DICE 2016
Spacetime - Matter - Quantum Mechanic