92 research outputs found

    Creation of ultracold Sr2 molecules in the electronic ground state

    Full text link
    We report on the creation of ultracold 84Sr2 molecules in the electronic ground state. The molecules are formed from atom pairs on sites of an optical lattice using stimulated Raman adiabatic passage (STIRAP). We achieve a transfer efficiency of 30% and obtain 4x10^4 molecules with full control over the external and internal quantum state. STIRAP is performed near the narrow 1S0-3P1 intercombination transition, using a vibrational level of the 0u potential as intermediate state. In preparation of our molecule association scheme, we have determined the binding energies of the last vibrational levels of the 0u, 1u excited-state, and the 1\Sigma_g^+ ground-state potentials. Our work overcomes the previous limitation of STIRAP schemes to systems with Feshbach resonances, thereby establishing a route that is applicable to many systems beyond bi-alkalis.Comment: 7 pages, 7 figures, 3 table

    A steady-state magneto-optical trap with 100 fold improved phase-space density

    Get PDF
    We demonstrate a continuously loaded 88Sr^{88}\mathrm{Sr} magneto-optical trap (MOT) with a steady-state phase-space density of 1.3(2)×1031.3(2) \times 10^{-3}. This is two orders of magnitude higher than reported in previous steady-state MOTs. Our approach is to flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.Comment: 11 pages, 5 figure

    Sisyphus Optical Lattice Decelerator

    Get PDF
    We experimentally demonstrate a variation on a Sisyphus cooling technique that was proposed for cooling antihydrogen. In our implementation, atoms are selectively excited to an electronic state whose energy is spatially modulated by an optical lattice, and the ensuing spontaneous decay completes one Sisyphus cooling cycle. We characterize the cooling efficiency of this technique on a continuous beam of Sr, and compare it with radiation pressure based laser cooling. We demonstrate that this technique provides similar atom number for lower end temperatures, provides additional cooling per scattering event and is compatible with other laser cooling methods. This method can be instrumental in bringing new exotic species and molecules to the ultracold regime.Comment: 11 pages, 11 figure

    Spontaneous demagnetization of a dipolar spinor Bose gas at ultra-low magnetic field

    Full text link
    Quantum degenerate Bose gases with an internal degree of freedom, known as spinor condensates, are natural candidates to study the interplay between magnetism and superfluidity. In the spinor condensates made of alkali atoms studied so far, the spinor properties are set by contact interactions, while magnetization is dynamically frozen, due to small magnetic dipole-dipole interactions. Here, we study the spinor properties of S=3 52^{52}Cr atoms, in which relatively strong dipole-dipole interactions allow changes in magnetization. We observe a phase transition between a ferromagnetic phase and an unpolarized phase when the magnetic field is quenched to an extremely low value, below which interactions overwhelm the linear Zeeman effect. The BEC magnetization changes due to magnetic dipole-dipole interactions that set the dynamics. Our work opens up the experimental study of quantum magnetism with free magnetization using ultra-cold atoms.Comment: 6 pages, 4 figures, 2 appendice

    Probing Brain Context-Sensitivity with Masked-Attention Generation

    Full text link
    Two fundamental questions in neurolinguistics concerns the brain regions that integrate information beyond the lexical level, and the size of their window of integration. To address these questions we introduce a new approach named masked-attention generation. It uses GPT-2 transformers to generate word embeddings that capture a fixed amount of contextual information. We then tested whether these embeddings could predict fMRI brain activity in humans listening to naturalistic text. The results showed that most of the cortex within the language network is sensitive to contextual information, and that the right hemisphere is more sensitive to longer contexts than the left. Masked-attention generation supports previous analyses of context-sensitivity in the brain, and complements them by quantifying the window size of context integration per voxel.Comment: 2 pages, 2 figures, CCN 202
    corecore