3 research outputs found

    Application Of A Receptor Pruning Methodology To The Enoyl-acp Reductase From Escherichia Coli (fabi)

    No full text
    Receptor pruning is an approach for achieving reasonable conformational ensemble profile in terms of time and computational resources. The purpose of this study is to reduce the size of a model structure of enoyl-acp reductase (ENR) from E. coli, FabI, to allow ligand-receptor molecular dynamic (MD) simulations to be computationally economical yet still provide meaningful binding thermodynamic data. Three reduced-size models of FabI were created by pruning away all residues greater than 12, 10 and 8 Å radius. The largest ligand was docked in the active site to define the largest required receptor model. Energy minimization and MD simulations were carried out using the MOLSIM 3.2 program. The lowest energy structure for each of receptor models from MD calculation was compared by root mean square (RMS) fit to the equivalent portion of the crystal structure of FabI. A scale-down 12 Å receptor model of the enzyme FabI maintains the structural integrity of the composite parent crystal structure. The perspectives include the structure-based design of new antituberculosis agents regarding the similarity in the active site of two ENRs, FabI and InhA (M. tuberculosis). © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.257629636Grassberger, M.A., Turnowsky, F., Hildebrandt, J., (1984) J. Med. Chem., 27, pp. 947-953Baldock, C., Rafferty, J.B., Sedelnikova, S.E., Baker, P.J., Stuitje, A.R., Slabas, A.R., Hawkes, T.R., Rice, D.W., (1996) Science, 274, pp. 2107-2110Baldock, C., De Boer, G.J., Rafferty, J.B., Stuitje, A.R., Rice, D.W., (1998) Biochem. Pharmacol., 55, pp. 1541-1549Bergler, H., Fuchsbichler, S., Högenauer, G., Turnowsky, F., Eur. J. Biochem., 19, p. 242Stewart, M.J., Parikh, S., Xiao, G., Tonge, P.J., Kisker, C., (1999) J. Mol. Biol., 290, pp. 859-865Rozwarski, D.A., Vilchèze, C., Sugantino, M., Bittman, R., Sacchettini, J.C., (1999) J. Biol. Chem., 274, pp. 15582-15589Kater, M.M., Koningstein, G.M., Nijkamp, H.J.J., Stuitje, A.R., (1994) Plant Mol. Biol., 25, pp. 771-790Magnuson, K., Jackowski, S., Rock, C.O., Cronan Jr., J.E., (1993) Microbiol. Rev., 57, pp. 522-542Barry III, C.E., Lee, R.E., Mdluli, K., Sampson, A.E., Schroeder, B.G., Slayden, R.A., Yuan, Y., (1998) Prog. Lipid Res., 37, pp. 143-179McCarthy, A.D., Hardie, D.G., (1984) Trends Biochem. Sci., 9, pp. 60-63Pasqualoto, K.F.M., Ferreira, E.I., (2001) Curr. Drug Targets, 2, pp. 427-437Pasqualoto, K.F.M., Ferreira, E.I., Santos-Filho, O.A., Hopfinger, A.J., (2004) J. Med. Chem., 47, pp. 3755-3764Tokarski, J.S., Hopfinger, A.J., (1997) J. Chem. Inf. Comput. Sci., 37, pp. 779-791Hopfinger, A.J., Wang, S., Tokarski, J.S., Jin, B., Albuquerque, M.G., Madhav, P.J., Duraiswami, C., (1997) J. Am. Chem. Soc., 119, pp. 10509-10524Albuquerque, M.G., Hopfinger, A.J., Barreiro, E.J., Alencastro, R.B., (1998) J. Chem. Inf. Comput. Sci., 38, pp. 925-938Ravi, M., Hopfinger, A.J., Hormann, R.E., Dinan, L., (2001) J. Chem. Inf. Comput. Sci., 41, pp. 1587-1604Santos-Filho, O.A., Hopfinger, A.J., (2002) Quant. Struct.-Act. Relat., 43, pp. 324-336Hong, X., Hopfinger, A.J., (2003) J. Chem. Inf. Comput. Sci., 43, pp. 324-336Pan, D., Tseng, Y., Hopfinger, A.J., (2003) J. Chem. Inf. Comput. Sci., 43, pp. 1591-1607Pan, D., Jianzhong, L., Senese, C., Hopfinger, A.J., Tseng, Y., (2004) J. Med. Chem., 47, pp. 3075-3088Berstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Tasumi, M., (1977) J. Mol. Biol., 112, pp. 535-542Weiner, S.J., Kollman, P.A., Nguyen, D.T., (1986) J. Comput. Chem., 7, pp. 230-252(2000) HyperChem Program Release 6.03 for Windows, , Hybercube, Inc., Gainesville, FLDoherty, D., (1997) MOLSIM: Molecular Mechanics and Dynamics Simulation Software. User's Guide, Version 3.2, , The Chem21 Group, Inc., Lake Forest, ILDewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P., (1985) J. Am. Chem. Soc., 107, pp. 3902-3909Bodor, N., Gabanyi, Z., Wong, C.K., (1989) J. Am. Chem. Soc., 111, pp. 3783-3786Gavezzotti, A., (1983) J. Am. Chem. Soc., 105, pp. 5220-5225Hopfinger, A.J., (1973) Conformational Properties of Macromolecules, p. 71. , Academic Press, New YorkTurnowsky, F., Fuchs, K., Jeschek, C., Hogenauer, G., (1989) J. Bacteriol., 171, pp. 6555-6565Dessen, A., Quémard, A., Blanchard, J.S., Jacobs, W.R., Sacchettini, J.C., (1995) Science, 267, pp. 1638-164

    Rational Approach In The New Antituberculosis Agent Design: Inhibitors Of Inha, The Enoyl-acp Reductase From Mycobacterium Tuberculosis [abordagem Racional No Planejamento De Novos Tuberculostáticos: Inibidores Da Inha, Enoil-acp Redutase Do M. Tuberculosis]

    No full text
    In conjunction with the spread of HIV infection, tuberculosis (TB) has been among the worldwide health threats. Mycobacteria resistance to the drugs currently used in the therapeutics is the main cause of TB resurgence. In view of this severe situation, the new and selective anti-TB design is of utmost importance. Fatty acid biosynthesis is a prokariontes and eucariontes biochemical process that supplies essential precursors for the assembly of important cellular components, such as phospholipids, lipoproteins, lipopolysaccharides, mycolic acids and cellular envelope. However, the biochemical and functional differences between the bacterial and mammals' fatty acid synthetic pathway have endowed the mycobacterial enzymes with distinct properties. These provide valuable opportunities for structure- or catalytic mechanism-based design of selective inhibitors as novel anti-TB drugs with improved properties. The enoyl-reductases are essential enzymes in the fatty acids elongation pathway towards the mycolic acids, the main mycobacteria cell wall constituents, biosynthesis and so they are potential targets to the rational new antimycobacteria drug design. This paper highlights recent approaches regarding the design of new anti-TB agents, particularly, the enoyl-ACP reductase inhibitors.442167179BALDOCK, C., de BOER, G.J., RAFFERTY, J.B., STUITJE, A.R., RICE, D.W., Mechanism of action of diazaborines (1998) Biochem. Pharmacol, 55, pp. 1541-1549BALDOCK, C., RAFFERTY, J.B., SEDELNIKOVA, S.E., BAKER, P.J., STUITJE, A.R., SLABAS, A.R., HAWKES, T.R., RICE, D.W., A mechanism of drug action revealed by structural studies of enoyl reductase (1996) Science, 274, pp. 2107-2110BANERJEE, A., DUBNAU, E., QUÉMARD, A., BALASUBRAMANIAN, V., UM, D.S., WILSON, T., inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis (1994) Science, 263, pp. 227-230BANERJEE, A., SUGANTINO, M., SACCHETTINI, J.C., JACOBS Jr, W.R., The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance (1998) Microbiology, 144, pp. 2697-2704BARRY III, C.E., MDLULI, K., Drug sensitivity and environmental adaptation of mycobacterial cell wall components (1996) Trends Microbiol, 4, pp. 275-281BARRY III, C.E., LEE, R.E., MDLULI, K., SAMPSON, A.E., SCHROEDER, B.G., SLAYDEN, R.A., YUAN, Y., Mycolic acids: Structure, biosynthesis and physiological functions (1998) Prog. Lipid. Res, 37, pp. 143-179BERNSTEIN, J., LOTT, W.A., STEINBERG, B.A., YALE, H.L., Chemotherapy of experimental tuberculosis - V.Isonicotinic acid hydrazide (nydrazid) and related compounds (1952) Am. Rev. Tuberc, 65, pp. 357-364BERNSTEIN, J., JAMBOR, W.P., LOTT, W.A., PANSY, F., STEINBERG, B.A., YALE, H.L., Chemotherapy of experimental tuberculosis - VI. Derivatives of isoniazid (1953) Am. Rev.Tuberc, 67, pp. 354-365BERNSTEIN, J., JAMBOR, W.P., LOTT, W.A., PANSY, F., STEINBERG, B.A., YALE, H.L., Chemotherapy of experimental tuberculosis - VII. Heterocyclic acid hydrazides and derivatives (1953) Am. Rev. Tuberc, 67, pp. 366-375BHARGAVA, H.N., LEONARD, P.A., Triclosan: Applications and safety (1996) Am. J. Infect. Control, 24, pp. 209-218BRENAN, P.J., NIKAIDO, H., The envelope of mycobacteria (1995) Annu. Rev. Biochem, 64, pp. 29-63COHEN, N.C. Guidebook on molecular modeling in drug design.San Diego: Academic Press, 1996. 361pCORBETT, E.L., WATT, C.J., WALKER, N., MAHER, D., WILLIAMS, B.G., RAVIGLIONE, M.C., DYE, C., The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic (2003) Arch. Intern. Med, 163 (9), pp. 1009-1212DESSEN, A., QUÉMARD, A., BLANCHARD Jr, J.S., JACOBS, W.R., SACCHETTINI, J.C., Crystal structure and fuction of the isoniazid target of Mycobacterium tuberculosis (1995) Science, 267, pp. 1638-1641Dias, M.V.B., Vasconcelos, I.B., Prado, A.M.X., Fadel, V., Basso, L.A., DE AZEVEDO, W.F., SANTOS, D.S., Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-transenoyl-ACP (CoA) reductase from Mycobacterium tuberculosis (2007) J. Struct. Biol, 159, pp. 369-380DOLIN, P.J., RAVIGLIONE, M.C., KOCHI, A., Global tuberculosis incidence and mortality during 1990-2000 (1994) Bull. WHO, 72, pp. 213-220ESPINAL, M.A., The global situation of MDR-TB (2003) Tuberculosis, 83, pp. 44-51GANDY, M., ZUMLA, A., The resurgence of disease: Social and historical perspectives on the 'new' tuberculosis (2002) Soc. Sci. Med, 55, pp. 385-396GRASSBERGER, M.A., TURNOWSKY, F., HILDEBRANDT, J., Preparation and antibacterial activities of new 1,2,3-diazaborine derivatives and analogues (1984) J. Med. Chem, 27, pp. 947-953HE, X., ALIAN, A., STROUD, R., MONTELLANO, P.R.O., Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis (2006) J. Med. Chem, 49, pp. 6308-6323HEATH, R.J., LI, J., ROLAND, G.E., ROCK, C.O., Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene (2000) J. Biol. Chem, 275, pp. 4654-4659HEATH, R.J., ROCK, C.O., A triclosan-resistant bacterial enzyme (2000) Nature, 406, pp. 145-146HEATH, R.J., WHITE, S.W., ROCK, C.O., Lipid biosynthesis as a target for antibacterial agents (2001) Prog. Lipid. Res, 40, pp. 467-497HEATH, R.J., WHITE, S.W., ROCK, C.O., Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics (2002) Appl. Microbiol. Biotechnol, 58, pp. 695-703HEATH, R.J., YU, Y.-T., SHAPIRO, M.A., OLSON, E., ROCK, C.O., Broad spectrum antimicrobial biocides target the FabI component of fatty acid biosynthesis (1998) J. Biol. Chem, 273, pp. 30316-30321HEYM, B., HONORE, N., TRUFFOT-PERNOT, C., BANERJEE, A., SCHURRA, C., JACOBS, W.R., VAN EMBDEN, J.D., COLE, S.T., Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: A molecular study (1994) Lancet, 344, pp. 293-298HOPFINGER, A.J., WANG, S., TOKARSKI, J.S., JIN, B., ALBUQUERQUE, M., MADHAV, P.J., DURAISWAMI, C., Construction of 3D-QSAR models using the 4D-QSAR analysis formalism (1997) J. Am. Chem. Soc, 119, pp. 10509-10524JANIN, Y.L., Antituberculosis drugs: Ten years of research (2007) Bioorg. Med. Chem, 15, pp. 2479-2513JARLIER, V., NIKAIDO, H., Mycobacterial cell wall: Structure and role in natural resistance to antibiotics (1994) FEMS Microbiol. Lett, 15, pp. 11-18KLEBE, G., Virtual ligand screening: Strategies, perspectives and limitations (2006) Drug Discov.Today, 11, pp. 580-594KREMER, L., DOVER, L.G., MORBIDONI, H.R., VILCHÈZE, C., MAUGHAN, W.N., BAULARD, A., TU, S.C., BESRA, G.S., Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria (2003) J. Biol. Chem, 278 (23), pp. 20547-20554KRUH, N.A., RAWAT, R., RUZSICSKA, B.P., TONGE, P.J., Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis (2007) Protein Sci, 16, pp. 1617-1627KUO, M.R., MORBIDONI, H.R., ALLAND, D., SNEDDON, S.F., GOURLIE, B.B., STAVESKI, M.M., LEONARD, M., FIDOCK, D.A., Targeting tuberculosis and malaria through inhibition of enoyl reductase: Compound activity and structural data (2003) J. Biol. Chem, 278, pp. 20851-20859LARSEN, M.H., VILCHÈZE, C., KREMER, L., BESRA, G.S., PARSONS, L., SALFINGER, M., HEIFETS, L., JACOBS Jr, W.R., Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis (2002) Mol. Microbiol, 46, pp. 453-466LEVY, C.W., BALDOCK, C., WALLACE, A.J., SEDELNIKOVA, S., VINER, R.C., CLOUGH, J.M., STUITJE, A.R., RAFFERTY, J.B., A study of the structure-activity relationship for diazaborine inhibition of Escherichia coli enoyl-acp reductase (2001) J. Mol. Biol, 309, pp. 171-180MACARRON, R., Critical review of the role of HTS in drug discovery (2006) Drug Discov. Today, 11, pp. 277-279MARRAKCHI, H., ZHANG, Y.M., ROCK, C.O., Mechanistic diversity and regulation of Type II fatty acid synthesis (2002) Biochem. Soc. Trans, 30, pp. 1050-1055McMURRY, L.M., OETHINGER, M., LEVY, S.B., Triclosan targets lipid synthesis (1998) Nature, 394, pp. 531-532MIDDLEBROOK, G., COHN, M.L., Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli (1953) Science, 118, pp. 297-299MORLOCK, G.P., METCHOCK, B., SIKES, D., CRAWFORD, J.T., COOKSEY, R.C., ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates (2003) Antimicrob. Agents Chemother, 47, pp. 3799-3805MUSSER, J.M., KAPUR, V., WILLIAMS, D.L., KREISWIRTH, B.N., van SOOLINGEN, D., van EMBDEN, J.D., Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: Restricted array of mutations associated with drug resistance (1996) J. Infect. Dis, 173, pp. 196-202NAYYAR, A., JAIN, R., Recent advances in new structural classes of anti-tuberculosis agents (2005) Curr. Med. Chem, 12 (16), pp. 1873-1886OLIVEIRA, J.S., PEREIRA, J.H., CANDURI, F., RODRIGUES, N.C., DE SOUZA, O.N., DE AZEVEDO Jr, W.F., BASSO, L.A., SANTOS, D.S., Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis (2006) J. Mol. Biol, 359, pp. 646-666OLIVEIRA, J.S., VASCONCELOS, I.B., MOREIRA, I.S., SANTOS, D.S., BASSO, L.A., Enoyl reductases as targets for the development of anti-tubercular and antimalarial agents (2007) Curr. Drug Targets, 8, pp. 399-411PAN, D., LIU, J., SENESE, C., HOPFINGER, A.J., TSENG, Y., Characterization of a ligand-receptor binding event using receptor-dependent four-dimensional quantitative structure-activity relationship analysis (2004) J. Med. Chem, 47, pp. 3075-3088PAN, D., TSENG, Y., HOPFINGER, A.J., Quantitative structure -based design: Formalism and application of receptor-dependent RD-4D-QSAR analysis to a set of glucose analogue inhibitors of glycogen phosphorylase (2003) J. Chem. Inf. Comput. Soc, 43, pp. 1594-1607PARIKH, S.L., XIAO, G., TONGE, P.J., Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid (2000) Biochemistry, 39, pp. 7645-7650PASQUALOTO, K.F., FERREIRA, E.I., An approach for the rational design of new antituberculosis agents (2001) Curr. Drug Targets, 2, pp. 427-437PASQUALOTO, K.F.M., (2003) Planejamento racional de tuberculostáticos com base na estrutura dos ácidos micólicos da parede celular do, , Mycobacterium tuberculosis. São Paulo, 231p.[Tese de Doutorado. Faculdade de Ciências Farmacêuticas. Universidade de São PauloPASQUALOTO, K.F.M., FERREIRA, E.I., SANTOS, O.A.F., HOPFINGER, A.J., Rational design of new antituberculosis agents: Receptor-independent four-dimensional quantitative structure-activity relationship analysis of a set of isoniazid derivatives (2004) J. Med. Chem, 47, pp. 3755-3764PATRICK, G.L., (2005) An introduction to medicinal chemistry, pp. 163-184. , 3.ed. Oxford: Oxford University PressPAYNE, D.J.MILLER, W.H.BERRY, V.BROSKY, J.BURGESS, W.J.CHEN, E.DEWOLF, W.E.FOSBERRY, A.P.GREENWOOD, R.HEAD, M.S.HEERDING, D.A.JANSON, C.A.JAWORSKI, D.D.KELLER, P.M.MANLEY, P.J.MOORE, T.D.NEWLANDER, K.A.PEARSON, S.POLIZZI, B.J.QIU, X.RITTENHOUSE, S.F.RADOSTI, C.S.SALYERS, K.L.SEEFELD, M.A.SMYTH, M.G.TAKATA, D.T.UZINSKAS, I.N.VAIDYA, K.WALLIS, N.G.WINRAM, S.B.YUAN, C.C.K.HUFFMAN, W. Discovery of a novel and potent class of FabI-directed antibacterial agents. Antimicrob. Agents Chemother., v.46, p.3118-3124, 2002QUÉMARD, A., SACCHETTINI, J.C., DESSEN, A., VILCHÈZE, C., BITTMAN Jr., R., JACOBS, W.R., BLANCHARD, J.S., Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis (1995) Biochemistry, 34, pp. 8235-8241RAMASWAMY, S.V., REICH, R., DOU, S.J., JASPERSE, L., PAN, X., WANGER, A., QUITUGUA, T., GRAVISS, E.A., Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis (2003) Antimicrob. Agents Chemother, 47, pp. 1241-1250RAWAT, R., WHITTY, A., TONGE, P.J., The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance (2003) Proc. Natl. Acad. Sci. U.S.A, 100 (24), pp. 13881-13886ROZWARSKI, D.A., GRANT Jr., G.A., BARTON, D.H.R., JACOBS, W.R., SACCHETTINI, J.C., Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis (1998) Science, 279, pp. 98-102ROZWARSKI, D.A., VILCHEZE, C., SUGANTINO, M., BITTMAN, R., SACCHETTINI, J.C., Crystal structure of the Mycobacterium tuberculosis enoyl-acp reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate (1999) J. Biol. Chem, 27, pp. 15582-15589SCIOR, T., GARCES-EISELE, S.J., Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: A critical review (2006) Curr. Med. Chem, 13, pp. 2205-2219SINGH, S., Tuberculosis, focus on tropical diseases (2004) Cur. Anaesthesia Crit. Care, 15, pp. 165-171STEWART, M.J., PARIKH, S., XIAO, G., TONGE, P.J., KISKER, C., Structural basis and mechanism of enoyl reductase inhibition by triclosan (1999) J. Mol. Biol, 290, pp. 859-865SULLIVAN, T.J.TRUGLIO, J.J.BOYNE, M.E.NOVICHENOK, P.ZHANG, X.STRATTON, C.F.LI, H.J.KAUR, T.AMIN, A.JOHNSON, F.SLAYDEN, R.A.KISKER, C.TONGE, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., v.1, p.43-53, 2006TOKARSKI, J.S., HOPFINGER, A.J., Constructing protein models for ligand-receptor binding thermodynamic simulations: An application to a set of peptidometic rennin inhibitors (1997) J. Chem. Inf. Comput. Sci, 37, pp. 779-791TOKARSKI, J.S., HOPFINGER, A.J., Prediction of ligand-receptor binding thermodynamics by free energy force field (FEFF) 3D-QSAR analysis: Application to a set of peptidometic rennin inhibitors (1997) J. Chem. Inf. Comput. Sci, 37, pp. 792-811VILCHÈZE, C., JACOBS Jr, W.R., The mechanism of isoniazid killing: Clarity through the scope of genetics (2007) Annu. Rev. Microbiol, 61, pp. 35-50VILCHÈZE, C., MORBIDONI, H.R., WEISBROD, T.R., IWAMOTO, H., KUO, M., SACCHETTINI, J.C., JACOBS Jr, W.R., Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis (2000) J. Bacteriol, 182, pp. 4059-4067VILCHÈZE, C., WANG, F., ARAI, M., HAZBON, M.H., COLANGELI, R., KREMER, L., WEISBROD, T.R., JACOBS Jr, W.R., Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid (2006) Nat. Med, 12, pp. 1027-1029VILCHÈZE, C., WEISBROD, T.R., CHEN, B., KREMER, L., HAZBÓN, M.H., WANG, F., ALLAND, D., JACOBS Jr, W.R., Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in Mycobacteria (2005) Antimicrob. Agents Chemother, 49, pp. 708-720WERMUTH, C.G., Strategies (2003) The practice of medicinal chemistry, pp. 69-87. , search for new lead compounds or original working hypothesis, _, San Diego: Academic PressWorld Health Organization (2007) Global tuberculosis control - surveillance, planning, financing, , http://www.who.int/tb/publications/global_report/2007/en/index.html, Disponível em:, Acesso em: 12 out. 2007ZHANG, Y., HEYM, B., ALLEN, B., YOUNG, D., COLE, S., The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis (1992) Nature, 358, pp. 591-593ZHANG, Y., The magic bullets and tuberculosis drug targets (2005) Annu. Rev. Pharmacol. Toxicol, 45, pp. 529-564ZHANG, Y.POST-MARTENS, K.DENKIN, S. New drug candidates and therapeutic targets for tuberculosis therapy. Drug. Discov. Today, v.11, p.21-27, 2006YALE, H.L., LOSEE, K., MARTINS, J., HOLSING, M., PERRY, F.M., BERNSTEIN, J., Chemoterapy of experimental tuberculosis. VIII. The synthesis of acid hydrazides, their derivatives and related compounds (1953) J. Am. Chem. Soc, 75, pp. 1933-194

    Development And Evaluation Of Amoxicillin Formulations By Direct Compression: Influence Of The Adjuvants On Physicomechanical And Biopharmaceutical Properties Of The Tablets

    No full text
    The amoxicillin 500 mg formulations were developed by direct compression using a 23 factorial design. Eight different formulations were carried out and they were analyzed considering three levels: the type of microcrystalline cellulose (Avicel® PH-102 or Avicel® PH-200), the presence or absence of spray-dried lactose, and the presence or absence of the superdisintegrant agent, croscarmellose sodium. Average weight, thickness and diameter, hardness, friability, amoxicillin concentration (iodometric assay), disintegration time, and dissolution profile were the parameters used for the tablets evaluation. Considering all evaluated parameters, a suitable amoxicillin 500 mg tablet formulation should present the microcrystalline cellulose type Avicel® PH-102 and the superdisintegrant agent, croscarmellose sodium (Ac-disol® SD-711), in its composition.2413947Korolkovas, A., (1988) Essentials of Medicinal Chemistry, 2nd Ed., p. 1216. , New York: Wiley-InterscienceDevani, M.B., Patel, I.T., Patel, T.M., (1992) J. Pharm. Biomed. Anal., 10, pp. 355-358Bird, A.E., (1994) Analytical Profiles of Drug Substances and Excipients, 23, pp. 1-52Carceles, C.M., Escudero, E., Vicente, M.S., Serrano, J.M., Carli, S., (1995) Vet. Quart., 17, pp. 134-138Chogle, P., Gudsoorkar, V.R., Shete, J.S., (1996) East Pharm., 39, pp. 121-123Westphal, J.F., Deslandes, A., Brogard, J.M., Carbon, C., (1991) J. Antimicrob. Chemother., 27, pp. 647-654Sanchez, M.A.C., Pastor, R.M.S., Suarez, A.I.T., (1991) An. Real Acad. Farm., 57, pp. 553-561Enézian, G.M., (1972) Pharm. Acta Helv., 47, pp. 321-363Banker, G.S., Anderson, N.R., (1986) The Theory and Pratice of Industrial Pharmacy, , New York: Lea & FebigerShangraw, R.F., (1989) Pharmaceutical Dosage Forms: Tablets, 1. , New York: Marcel Dekker IncBauer-Brandl, A., Becker, D., (1996) Drug Dev. Ind. Pharm., 22, pp. 417-430Sheth, B.B., Bandelin, F.J., Shangraw, R.F., (1980) Pharmaceutical Dosage Forms: Tablets, 1. , New York: Marcel Dekker IncAnsel, H.C., Popovich, N.G., Allen Jr., L.V., (1995) Pharmaceutical Dosage Forms and Drug Delivery Systems, , Philadelphia: Lea & FebigerDoelker, E., (1993) Drug Dev. Ind. Pharm., 19, pp. 2399-2471Ferrero, C., Muñoz, N., Velasco, M.V., Muñoz-Ruiz, A., Jiménez-Castellano, S.R., (1997) Int. J. Pharm., 144, pp. 11-21(2004) DMS Anti-Infectives - Amoxicillin Trihydrate, Compacted for Direct Compression, , www.dsm.com/en_US/html/dai/amoxicillinfordirectcompression.htmNeto, B.B., Scarminio, I.S., Bruns, R.E., (1995) Planejamento e Otimização de Experimentos, 2 Ed., pp. 61-100. , Editora da UNICAMP(1988) Brazilian Pharmacopoeia, , Part I. General Methods, 4th ed., São Paulo: AtheneuFood and Drug Administration, HHS (1996). Code of Federal. Washington: Office of the Federal regulations. Pp 21, págs. 387-535(1995) Pharmacopoeia of United States of America, , 23th ed., Rockville: United States Pharmacopoeial ConventionDoelker, E., Massuelle, D., Veuillez, F., Humbert-Droz, P., (1995) Drug Dev. Ind. Pharm., 21, pp. 643-661Gordon, M.S., Chatterjee, B., Chowhan, Z.T., (1990) J. Pharm. Sci., 79, pp. 43-47Roberts, R.J., Rowe, R.C., (1986) J. Pharm. Pharmacol., 38, pp. 567-571Martin, A., Swarbrick, J., Cammarata, A., (1993) Physical Pharmacy, , Philadelphia: Lea & FebigerHassan, M.A., Kaloustian, J., Prinderre, P., Ramsi, S.H., Khaled, K.A., El-Faham, T.H., Tous, S.S., Joachim, J., (1996) Pharmazie, 51, pp. 400-403Gordon, M.S., Chowhan, Z.T., (1987) J. Pharm. Sci., 76, pp. 907-90
    corecore