45 research outputs found

    Exome Sequencing Identifies Compound Heterozygous Mutations in SCN5A Associated with Congenital Complete Heart Block in the Thai Population

    Get PDF
    Background. Congenital heart block is characterized by blockage of electrical impulses from the atrioventricular node (AV node) to the ventricles. This blockage can be caused by ion channel impairment that is the result of genetic variation. This study aimed to investigate the possible causative variants in a Thai family with complete heart block by using whole exome sequencing. Methods. Genomic DNA was collected from a family consisting of five family members in three generations in which one of three children in generation III had complete heart block. Whole exome sequencing was performed on one complete heart block affected child and one unaffected sibling. Bioinformatics was used to identify annotated and filtered variants. Candidate variants were validated and the segregation analysis of other family members was performed. Results. This study identified compound heterozygous variants, c.101G>A and c.3832G>A, in the SCN5A gene and c.28730C>T in the TTN gene. Conclusions. Compound heterozygous variants in the SCN5A gene were found in the complete heart block affected child but these two variants were found only in the this affected sibling and were not found in other unaffected family members. Hence, these variants in the SCN5A gene were the most possible disease-causing variants in this family

    Emergence of HIV-1 drug resistance mutations among antiretroviral-naïve HIV-1-infected patients after rapid scaling up of antiretroviral therapy in Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After rapid scaling up of antiretroviral therapy in HIV-1-infected patients, the data of primary HIV-1 drug resistance in Thailand is still limited. This study aims to determine the prevalence and associated factors of primary HIV-1 drug resistance in Thailand.</p> <p>Methods</p> <p>A prospective observational study was conducted among antiretroviral-naïve HIV-1-infected Thai patients from 2007 to 2010. HIV-1 subtypes and mutations were assayed by sequencing a region of HIV-1 pol gene. Surveillance drug resistance mutations recommended by the World Health Organization for surveillance of transmitted HIV-1 drug resistance in 2009 were used in all analyses. Primary HIV-1 drug resistance was defined as the presence of one or more surveillance drug resistance mutations.</p> <p>Results</p> <p>Of 466 patients with a mean age of 38.8 years, 58.6% were males. Risks of HIV-1 infection included heterosexual (77.7%), homosexual (16.7%), and intravenous drug use (5.6%). Median (IQR) CD4 cell count and HIV-1 RNA were 176 (42-317) cells/mm<sup>3 </sup>and 68,600 (19,515-220,330) copies/mL, respectively. HIV-1 subtypes were CRF01_AE (86.9%), B (8.6) and other recombinants (4.5%). The prevalence of primary HIV-1 drug resistance was 4.9%; most of these (73.9%) had surveillance drug resistance mutations to only one class of antiretroviral drugs. The prevalence of patients with NRTI, NNRTI, and PI surveillance drug resistance mutations was 1.9%, 2.8% and 1.7%, respectively. From logistic regression analysis, there was no factor significantly associated with primary HIV-1 drug resistance. There was a trend toward higher prevalence in females [odds ratio 2.18; 95% confidence interval 0.896-5.304; p = 0.086].</p> <p>Conclusions</p> <p>There is a significant emergence of primary HIV-1 drug resistance in Thailand after rapid scaling up of antiretroviral therapy. Although HIV-1 genotyping prior to antiretroviral therapy initiation is not routinely recommended in Thailand, our results raise concerns about the risk of early treatment failure in patients with primary HIV-1 drug resistance. Interventions to prevent the transmission of HIV-1 drug resistance and continuation of surveillance for primary HIV-1 drug resistance in Thailand are indicated.</p

    Novel Coronavirus: What to Learn from a Microbiologist?

    No full text

    Integrated Automatic Workflow for Phylogenetic Tree Analysis Using Public Access and Local Web Services

    No full text
    At the present, coding sequence (CDS) has been discovered and larger CDS is being revealed frequently. Approaches and related tools have also been developed and upgraded concurrently, especially for phylogenetic tree analysis. This paper proposes an integrated automatic Taverna workflow for the phylogenetic tree inferring analysis using public access web services at European Bioinformatics Institute (EMBL-EBI) and Swiss Institute of Bioinformatics (SIB), and our own deployed local web services. The workflow input is a set of CDS in the Fasta format. The workflow supports 1,000 to 20,000 numbers in bootstrapping replication. The workflow performs the tree inferring such as Parsimony (PARS), Distance Matrix - Neighbor Joining (DIST-NJ), and Maximum Likelihood (ML) algorithms of EMBOSS PHYLIPNEW package based on our proposed Multiple Sequence Alignment (MSA) similarity score. The local web services are implemented and deployed into two types using the Soaplab2 and Apache Axis2 deployment. There are SOAP and Java Web Service (JWS) providing WSDL endpoints to Taverna Workbench, a workflow manager. The workflow has been validated, the performance has been measured, and its results have been verified. Our workflow’s execution time is less than ten minutes for inferring a tree with 10,000 replicates of the bootstrapping numbers. This paper proposes a new integrated automatic workflow which will be beneficial to the bioinformaticians with an intermediate level of knowledge and experiences. The all local services have been deployed at our portal http://bioservices.sci.psu.ac.t

    Diagnostic stewardship to limit repeat plasma cytomegalovirus viral load testing

    No full text
    Abstract Background Frequent serial monitoring of plasma cytomegalovirus (CMV) viral load caused unnecessary budgets for laboratory testing without changes in treatment. We aimed to implement diagnostic stewardship to limit CMV viral load testing at appropriate intervals. Methods A quasi-experimental study was performed. To avoid unnecessary plasma CMV viral load testing, the inpatient electronic pop-up reminder was launched in 2021. In cases with plasma CMV viral load testing was ordered in intervals of less than five days, telephone interview and feedback were performed. Pre-post intervention data was compared in terms of clinical and monetary outcomes. The rate of plasma CMV viral load testing performed in intervals of less than five days was compared between 2021 and 2019 using the Poisson regression model. Results After the protocol implementation, there was a significant decrease in the rate of plasma CMV viral load test orders in intervals of less than five days from 17.5% to 8.0% [incidence rate ratio 0.40, p < 0.001]. There was no statistically significant difference in the incidence of CMV DNAemia and CMV disease (p = 0.407 and 0.602, respectively). As a result, the hospital could save the costs of plasma CMV viral load testing per 1,000 patients performed with intervals of less than five days from 2,646,048.11 to 1,360,062.89 Thai Baht. Conclusions The diagnostic stewardship program is safe and helpful in reducing unnecessary plasma CMV viral load testing and costs

    The Detection of SARS-CoV2 Antigen in Wastewater Using an Automated Chemiluminescence Enzyme Immunoassay

    No full text
    The SARS-CoV-2 virus, which is driving the current COVID-19 epidemic, has been detected in wastewater and is being utilized as a surveillance tool to establish an early warning system to aid in the management and prevention of future pandemics. qPCR is the method usually used to detect SARS-CoV-2 in wastewater. There has been no study using an immunoassay that is less laboratory-intensive than qPCR with a shorter turnaround time. Therefore, we aimed to evaluate the performance of an automated chemiluminescence enzyme immunoassay (CLEIA) for SARS-CoV-2 antigen in wastewater. The CLEIA assay achieved 100% sensitivity and 66.7% specificity in a field-captured wastewater sample compared to the gold standard RT-qPCR. Our early findings suggest that the SARS-CoV-2 antigen can be identified in wastewater samples using an automated CLEIA, reducing the turnaround time and improving the performance of SARS-CoV-2 wastewater monitoring during the pandemic

    Association of CYP2D6 and CYP2C19 polymorphisms and disease-free survival of Thai post-menopausal breast cancer patients who received adjuvant tamoxifen

    No full text
    Montri Chamnanphon,1 Khunthong Pechatanan,2 Ekapob Sirachainan,3 Narumol Trachu,4 Wasun Chantratita,5 Ekawat Pasomsub,5 Wilai Noonpakdee,6 Insee Sensorn,1,7 Chonlaphat Sukasem11Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 2Department of Medicine, Phramongkutklao College of Medicine, 3Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 4Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 5Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 6Department of Biochemistry, Faculty of Science, Mahidol University, 7Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, ThailandPurpose: To investigate the impact of CYP2D6 and CYP2C19 polymorphisms in predicting tamoxifen efficacy and clinical outcomes in Thai breast cancer patients.Methods: Polymorphisms of CYP2D6&nbsp;and CYP2C19 were genotyped by the AmpliChip&trade; CYP450 Test (Roche Molecular Diagnostics, Branchburg, NJ, USA) for 57 patients, who were matched as recurrent versus nonrecurrent breast cancers (n = 33 versus n = 24, respectively, with a 5-year follow-up).Results: Based on the genotype data, five CYP2D6 predicted phenotype groups were identified in this study including homozygous extensive metabolizer (13 of 57, 22.80%), extensive/intermediate metabolizer (23 of 57, 40.40%), extensive/poor metabolizer (3 of 57, 5.30%), homozygous intermediate metabolizer (14 of 57, 24.50%), and intermediate/poor metabolizer (4 of 57, 7.00%), and three CYP2C19 genotype groups including homozygous extensive metabolizer (27 of 57, 47.40%), extensive/intermediate metabolizer (27 of 57, 47.40%), and homozygous poor metabolizer (3 of 57, 5.30%). The CYP2D6 variant alleles were *10 (52 of 114, 45.60%), *5 (5 of 114, 4.40%), *41 (2 of 114, 1.80%), *4 (1 of 114, 0.90%), and *36 (1 of 114, 0.90%); the CYP2C19 variant alleles were *2 (27 of 114, 23.70%) and *3 (6 of 114, 5.30%). Kaplan&ndash;Meier estimates showed significantly shorter disease-free survival in patients with homozygous TT when compared to those with heterozygous CT or homozygous CC at nucleotides 100C>T and 1039C>T (CYP2D6*10) post-menopausal (log-rank test; P = 0.046). They also had increased risk of recurrence, but no statistically significant association was observed (hazard ratio 3.48; 95% confidence interval 0.86&ndash;14.07; P = 0.080).Conclusion: The CYP2D6 and CYP2C19 polymorphisms were not involved in tamoxifen efficacy. However, in the subgroup of post-menopausal women, the polymorphisms in CYP2D6 and CYP2C19 might be useful in predicting tamoxifen efficacy and clinical outcomes in breast cancer patients receiving adjuvant tamoxifen treatment. As the number of breast cancer patients was relatively small in this study, results should be confirmed in a larger group of prospective patients.Keywords: CYP2D6, CYP2C19, disease-free survival, tamoxifen, pharmacogenetics, breast cance
    corecore