61 research outputs found

    The Role of Polar Pili in the Adherence of Pseudomonas Aeruginosa to Injured Canine Tracheal Cells: A Semiquantitative Morphologic Study

    Get PDF
    Pseudomonas aeruginosa adheres to respiratory epithelial cells in a highly specific fashion. In order to study the role of P. aeruginosa polar pili in the adherence process we conducted a quantitative morphological electron microscopic examination of P. aeruginosa adherence to SO2 injured canine tracheal cells in vitro. A pilin lacking background strain of P. aeruginosa PAK (BLP2) was constructed using a gene replacement and it in turn was engineered to express either the pilin gene of P. aeruginosa PAO, PAK , or no pilin gene . After 30 minutes incubation of these bacterial strains with injured canine tracheal rings the P. aeruginosa strains expressing pili adhered quantitatively more to the injured tracheal cells than did the pili lacking strains. PAO bearing strains adhered in greater numbers than PAK bearing strains. Healthy tracheal cells did not have any bacteria bound to their surfaces. The bacteria bound to the cilia and lateral edge of the exfoliating tracheal cells. Invasion of tracheal cells by piliated P. aeruginosa bacteria and penetration into the submucosa was also demonstrated. These data confirm the role of pili as important adhesins to injured tracheal cells. The difference in the adherence characteristics of pilin types PAK versus PAO may relate to the differences in the primary structure of these two pilin molecules

    Quantitative Assessment of the Sensitivity of Various Commercial Reverse Transcriptases Based on Armored HIV RNA

    Get PDF
    The in-vitro reverse transcription of RNA to its complementary DNA, catalyzed by the enzyme reverse transcriptase, is the most fundamental step in the quantitative RNA detection in genomic studies. As such, this step should be as analytically sensitive, efficient and reproducible as possible, especially when dealing with degraded or low copy RNA samples. While there are many reverse transcriptases in the market, all claiming to be highly sensitive, there is need for a systematic independent comparison of their applicability in quantification of rare RNA transcripts or low copy RNA, such as those obtained from archival tissues.We performed RT-qPCR to assess the sensitivity and reproducibility of 11 commercially available reverse transcriptases in cDNA synthesis from low copy number RNA levels. As target RNA, we used a serially known number of Armored HIV RNA molecules, and observed that 9 enzymes we tested were consistently sensitive to ∼1,000 copies, seven of which were sensitive to ∼100 copies, while only 5 were sensitive to ∼10 RNA template copies across all replicates tested. Despite their demonstrated sensitivity, these five best performing enzymes (Accuscript, HIV-RT, M-MLV, Superscript III and Thermoscript) showed considerable variation in their reproducibility as well as their overall amplification efficiency. Accuscript and Superscript III were the most sensitive and consistent within runs, with Accuscript and Superscript II ranking as the most reproducible enzymes between assays.We therefore recommend the use of Accuscript or Superscript III when dealing with low copy number RNA levels, and suggest purification of the RT reactions prior to downstream applications (eg qPCR) to augment detection. Although the results presented in this study were based on a viral RNA surrogate, and applied to nucleic acid lysates derived from archival formalin-fixed paraffin embedded tissue, their relative performance on RNA obtained from other tissue types may vary, and needs future evaluation

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment

    Two unusual pilin sequences from different isolates of Pseudomonas aeruginosa.

    No full text
    The pilin genes of two Pseudomonas aeruginosa strains isolated from two different patients with cystic fibrosis were cloned and sequenced. The predicted protein sequences of these two pilins had several unusual features compared with other published P. aeruginosa pilin sequences
    corecore