25 research outputs found

    Consider the robot - Abstraction of bioinspired leg coordination and its application to a hexapod robot under consideration of technical constraints

    Get PDF
    Paskarbeit J. Consider the robot - Abstraction of bioinspired leg coordination and its application to a hexapod robot under consideration of technical constraints. Bielefeld: Universität Bielefeld; 2017.To emulate the movement agility and adaptiveness of stick insects in technical systems such as piezo actuators (Szufnarowski et al. 2014) or hexapod robots (Schneider, Cruse et al. 2006), a direct adaptation of bioinspired walking controllers like WALKNET has often been suggested. However, stick insects have very specific features such as adhesive foot pads that allow them to cling to the ground. Typically, robots do not possess such features. Besides, robots tend to be bigger and heavier than their biological models, usually possessing a different mass distribution as well. This leads to different mechanical and functional properties that need to be addressed in control. Based on the model of the stick insect *Carausius morosus*, the six-legged robot HECTOR was developed in this work to test and evaluate bioinspired controllers. The robot's geometrical layout corresponds to that of the stick insect, scaled up by a factor of 20. Moreover, like the stick insect, the robot features an inherent compliance in its joints. This compliance facilitates walking in uneven terrain since small irregularities can be compensated passively without controller intervention. However, the robot differs from the biological model, e.g., in terms of its size, mass, and mass distribution. Also, it does not possess any means to cling to the ground and therefore must maintain static stability to avoid tilting. To evaluate the ability of stick insects to maintain static stability, experimental data (published by Theunissen et al. (2014)) was examined. It can be shown that stick insects do not maintain static stability at all times. Still, due to their adhesive foot pads, they do not tumble. Therefore, a direct replication of the biological walking controller would not be suitable for the control of HECTOR. In a next step, the bioinspired walking controller WALKNET (Cruse, Kindermann, et al. 1998) was evaluated regarding its applicability for the control of HECTOR. For this purpose, different parametrizations of WALKNET were tested in a simulation environment. For forward walking, parameter sets were found that achieve a high, although not permanent stability. Thus, for the control of HECTOR, which requires continuous stability, a more abstract adaption of the bioinspired coordination had to be found. Based on the original coordination concepts of WALKNET, new coordination mechanisms were developed that incorporate the technical requirements (static stability, angular joint limits, torque constraints, etc.). The ability of the resulting controller to generate insect-like gaits is demonstrated for different walking scenarios in simulation. Moreover, locomotion that is unlikely for insects such as backwards and sidewards walking is shown to be feasible using the novel control approach. At the end of this work the applicability of the approach for the control of the real robot is proved in experiments on visual collision avoidance and basic climbing ability

    A hexapod walker using a heterarchical architecture for action selection

    Get PDF
    Schilling M, Paskarbeit J, Hoinville T, et al. A hexapod walker using a heterarchical architecture for action selection. Frontiers in Computational Neuroscience. 2013;7:126.Moving in a cluttered environment with a six-legged walking machine that has additional body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple forward walking on a flat plane requires the system to select between different internal states. The orchestration of these states depends on walking velocity and on external disturbances. Such disturbances occur continuously, for example due to irregular up-and-down movements of the body or slipping of the legs, even on flat surfaces, in particular when negotiating tight curves. The number of possible states is further increased when the system is allowed to walk backward or when front legs are used as grippers and cannot contribute to walking. Further states are necessary for expansion that allow for navigation. Here we demonstrate a solution for the selection and sequencing of different (attractor) states required to control different behaviors as are forward walking at different speeds, backward walking, as well as negotiation of tight curves. This selection is made by a recurrent neural network (RNN) of motivation units, controlling a bank of decentralized memory elements in combination with the feedback through the environment. The underlying heterarchical architecture of the network allows to select various combinations of these elements. This modular approach representing an example of neural reuse of a limited number of procedures allows for adaptation to different internal and external conditions. A way is sketched as to how this approach may be expanded to form a cognitive system being able to plan ahead. This architecture is characterized by different types of modules being arranged in layers and columns, but the complete network can also be considered as a holistic system showing emergent properties which cannot be attributed to a specific module

    A Bio-Inspired Model for Visual Collision Avoidance on a Hexapod Walking Robot

    Get PDF
    Meyer HG, Bertrand O, Paskarbeit J, Lindemann JP, Schneider A, Egelhaaf M. A Bio-Inspired Model for Visual Collision Avoidance on a Hexapod Walking Robot. In: Lepora FN, Mura A, Mangan M, Verschure FMJP, Desmulliez M, Prescott JT, eds. Biomimetic and Biohybrid Systems: 5th International Conference, Living Machines 2016, Edinburgh, UK, July 19-22, 2016. Proceedings. Cham: Springer International Publishing; 2016: 167-178.While navigating their environments it is essential for autonomous mobile robots to actively avoid collisions with obstacles. Flying insects perform this behavioural task with ease relying mainly on information the visual system provides. Here we implement a bioinspired collision avoidance algorithm based on the extraction of nearness information from visual motion on the hexapod walking robot platform HECTOR. The algorithm allows HECTOR to navigate cluttered environments while actively avoiding obstacles

    Integrative Biomimetics of Autonomous Hexapedal Locomotion

    Get PDF
    Dürr V, Arena PP, Cruse H, et al. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Frontiers in Neurorobotics. 2019;13: 88.Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots—ranging from compliant actuation, distributed proprioception and control of multiple legs, the formation of internal representations to the use of an internal body model—we introduce the walking robot HECTOR as a research platform for integrative biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant actuators, light-weight exoskeleton, distributed and expandable hardware architecture, and an appropriate dynamic simulation framework, HECTOR offers many opportunities to integrate research effort across biomimetics research on actuation, sensory-motor feedback, inter-leg coordination, and cognitive abilities such as motion planning and learning of its own body size

    Flexible coupling with integrated measuring system

    No full text
    Schneider A, Paskarbeit J. Flexible Kupplung mit integrierter Messeinrichtung (102011004113.3). German Patent and Trademark Office (GPTO). 2011

    Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints

    No full text
    Annunziata S, Paskarbeit J, Schneider A. Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints. Bioinspiration and Biomimetics. 2011;6(4): 45003

    A resilient robotic actuator based on an integrated sensorized elastomer coupling

    No full text
    Paskarbeit J, Annunziata S, Schneider A. A resilient robotic actuator based on an integrated sensorized elastomer coupling. In: Proceedings of the 16th International Conference on Climbing and Walking Robots. 2013: 257-264

    A novel stiffness node controller which enables simultaneous regulation of torque and stiffness in multi-muscle driven joints

    No full text
    Annunziata S, Paskarbeit J, Schneider A. A novel stiffness node controller which enables simultaneous regulation of torque and stiffness in multi-muscle driven joints. Presented at the IEEE/RSJ IROS 2011, San Francisco, California

    Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment

    No full text
    Frey H, Paskarbeit J, Anselmetti D. Tip-enhanced single molecule fluorescence near-field microscopy in aqueous environment. APPLIED PHYSICS LETTERS. 2009;94(24): 241116.For nanobiophysical applications, scanning near-field optical microscopy must combine high optical resolution and single fluorescent molecule sensitivity with the ability to operate in aqueous solution. These requirements can be achieved using the electric field enhancement at the tip of illuminated silicon probes for atomic force miscroscopy (AFM), whereby single ATTO-740 dye molecules could be imaged at an optical resolution down to 20 nm under ambient conditions as well as in aqueous solution. Two illumination modes have been tested: (a) bottom illumination in a total internal reflection microscopy setup and (b) direct top illumination, both with dedicated phase-sensitive single photon counting technology in dynamic AFM mode of operation

    HECTOR, a bio-inspired and compliant hexapod robot

    No full text
    Schneider A, Paskarbeit J, Schilling M, Schmitz J. HECTOR, a bio-inspired and compliant hexapod robot. In: Proceedings of the 3rd Conference on Biomimetics and Biohybrid Systems. Living Machines 2014. 2014: 427-430
    corecore