38 research outputs found

    A Functional 12T-insertion polymorphism in the <i>ATP1A1</i> promoter confers decreased susceptibility to hypertension in a male Sardinian population

    Get PDF
    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P &#60; 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population

    Dahl (S × R) rat congenic strain analysis confirms and defines a chromosome 17 spatial navigation quantitative trait locus to <10 Mbp.

    Get PDF
    A quantitative trait locus (QTL) linked with ability to find a platform in the Morris Water Maze (MWM) was located on chromosome 17 (Nav-5 QTL) using intercross between Dahl S and Dahl R rats. We developed two congenic strains, S.R17A and S.R17B introgressing Dahl R-chromosome 17 segments into Dahl S chromosome 17 region spanning putative Nav-5 QTL. Performance analysis of S.R17A, S.R17B and Dahl S rats in the Morris water maze (MWM) task showed a significantly decreased spatial navigation performance in S.R17B congenic rats when compared with Dahl S controls (P = 0.02). The S.R17A congenic segment did not affect MWM performance delimiting Nav-5 to the chromosome 17 65.02-74.66 Mbp region. Additional fine mapping is necessary to identify the specific gene variant accounting for Nav-5 effect on spatial learning and memory in Dahl rats

    Worse renal disease in postmenopausal F2[Dahl S x R]-intercross rats: detection of novel QTLs affecting hypertensive kidney disease.

    Get PDF
    The prevalence of hypertension increases after menopause with 75% of postmenopausal women developing hypertension in the United States, along with hypertensive end organ diseases. While human and animal model studies have indicated a protective role for estrogen against cardiovascular disease and glomerulosclerosis, clinical studies of hormone replacement therapy in postmenopausal women have shown polar results with some improvement in hypertension but worsening of hypertensive kidney disease, or no effect at all. These observations suggest that the pathogenesis of postmenopausal hypertension and its target organ complications is more complex than projected, and that loss of endogenous estrogens induces epigenetic changes that alter genetic susceptibility to end-organ complications per se resulting in pathogenetic mechanisms beyond correction by hormone replacement. We studied postmenopausal-induced changes in renal disease and performed a total genome scan for quantitative trait loci (QTLs) affecting kidney disease in postmenopausal 16m-old F2[Dahl S x R]-intercross female rats. We used glomerular injury score (GIS) as quantitative trait. We compared QTLs amongst premenopausal, ovariectomized and postmenopausal F2[Dahl S x R]-intercross rats using identical phenotype characterization. Postmenopausal F2[Dahl S x R]-intercross rats exhibited increased hypertensive glomerulosclerosis (P<0.01) and equivalent levels of kidney disease when compared to premenopausal and ovariectomized F2[Dahl S x R]-intercross rats respectively. We detected three significant to highly significant GIS-QTLs (GIS-pm1 on chromosome 4, LOD 3.54; GIS-pm2 on chromosome 3, LOD 2.72; GIS-pm3 on chromosome 5, LOD 2.37) and two suggestive GIS-QTLs (GIS-pm4 on chromosome 2, LOD 1.70; GIS-pm5 on chromosome 7, LOD 1.28), all of which were unique to this postmenopausal population. Detection of increased renal disease phenotype in postmenopausal and ovariectomized subjects suggests a protective role of ovarian hormones. Furthermore, the detection of distinct GIS-QTLs in postmenopausal intercross female rats suggests that distinct genetic mechanisms underlie hypertensive glomerulosclerosis in premenopausal and postmenopausal states

    Sex-specific effects on spatial learning and memory, and sex-independent effects on blood pressure of a <3.3 Mbp rat chromosome 2 QTL region in Dahl salt-sensitive rats.

    Get PDF
    Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: -26.0 mmHg, P = 0.003; males: -30.9 mmHg, P<1×10(-5)), diastolic blood pressure (females: -21.2 mmHg, P = 0.01; males: -25.7 mmHg, P<1×10(-5)), and mean arterial pressure (females: -23.9 mmHg, P = 0.004; males: -28.0 mmHg, P<1×10(-5)) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6-179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males

    Chromosome 5 blood pressure (BP) QTLs in male and female F2 [Dahl S x R]-intercross rats.

    No full text
    <p>Chromosome 5 was analyzed by interval mapping in male and female F2 [Dahl S x R]-intercross rat populations (QTX Map Manager) <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0042214#pone.0042214-Manly1" target="_blank">[10]</a>. Orientation of chromosome: left → right starting from lowest Mbp. Horizontal dashed lines mark LOD values for significance of linkage, from top to bottom: highly significant LOD ≥4.9 and significant LOD ≥3.2. LOD in female F2 [Dahl S x R]-intercross rats (black solid line); LOD in male F2 [Dahl S x R]-intercross rats (dotted line).</p

    Congenic analysis of <i>Nav-5</i> QTL region on chromosome 17.

    No full text
    <p>On the left of the figure is shown the relevant region of the physical map of rat chromosome 17. Values in parenthesis next to the marker names denote physical locations in base pairs. The mapped <i>Nav-5</i> QTL region of approximately 9.64 Mbp is noted (to the right). Congenic strains are shown as solid bars (representing the Dahl R introgressed fragments) flanked by open bars (representing the putative regions of recombination).</p

    Representative Periodic Acid Schiff (PAS)-stained photomicrographs of rat kidneys with low (≤115) and high (≥265) glomerular injury scores (GIS).

    No full text
    <p>A. Low magnification view of representative rat kidney section with low GIS, and (B–D) high magnification view of three representative rat kidney sections with low GIS scores demonstrate mild PAS-staining (magenta) of glomerular mesangial matrix and basement membranes, minimal PAS-staining of tubular basement membranes and tubular casts, and no glomerular sclerosis. In contrast, E, low magnification view of representative rat kidney section with high GIS, and (F–H) high magnification view of three representative rat kidney sections with high GIS show increased number of PAS-stained glomeruli with thickened mesangial matrix and basement membranes, glomerular sclerosis, tubular casts and PAS-stained thickened tubular basement membranes. Yellow <>\raster(80%)="rg1"<>, glomeruli, <>\raster(80%)="rg1"<> sclerotic glomeruli, *, tubular casts, bar = 200 micron (A, E), 50 microns (B–D, E–H).</p
    corecore