2 research outputs found

    Application of machine learning in predicting frailty syndrome in patients with heart failure

    Get PDF
    Prevention and diagnosis of frailty syndrome (FS) in patients with heart failure (HF) require innovative systems to help medical personnel tailor and optimize their treatment and care. Traditional methods of diagnosing FS in patients could be more satisfactory. Healthcare personnel in clinical settings use a combination of tests and self-reporting to diagnose patients and those at risk of frailty, which is time-consuming and costly. Modern medicine uses artificial intelligence (AI) to study the physical and psychosocial domains of frailty in cardiac patients with HF. This paper aims to present the potential of using the AI approach, emphasizing machine learning (ML) in predicting frailty in patients with HF. Our team reviewed the literature on ML applications for FS and reviewed frailty measurements applied to modern clinical practice. Our approach analysis resulted in recommendations of ML algorithms for predicting frailty in patients. We also present the exemplary application of ML for FS in patients with HF based on the Tilburg Frailty Indicator (TFI) questionnaire, taking into account psychosocial variables

    Importance analysis of psychosociological variables in frailty syndrome in heart failure patients using machine learning approach

    No full text
    The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF
    corecore