3 research outputs found

    Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    Get PDF
    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs

    Design and Testing of Non-Toxic RCS Thrusters for Second Generation Reusable Launch Vehicle

    No full text
    Under NASA sponsorship, Northrop Grumman Space Technology (NGST) designed, built and tested two non-toxic, reaction control engines, one using liquid oxygen (LOX) and liquid hydrogen (LH2) and the other using liquid oxygen and ethanol. This paper presents the design and testing of the LOX/LH2 thruster. The two key enabling technologies are the coaxial liquid-on-liquid pintle injector and the fuelcooling duct. The workhorse thruster was hotfire tested at the NASA Marshall Space Flight Center Test Stand 500 in March and April of 2002. All tests were performed at sea-level conditions. During the test program, 7 configurations were tested, including 2 combustion chambers, 3 LOX injector pintle tips, and 4 LHp injector settings. The operating conditions surveyed were 70 to 100% thrust levels, mixture ratios from 3.27 to 4.29, and LH2 duct cooling from 18.0 to 25.5% fuel flow. The copper heat sink chamber was used for 16 burns, each burn lasting from 0.4 to 10 seconds, totaling 51.4 seconds, followed by Haynes chamber testing ranging from 0.9 to 120 seconds, totaling 300.9 seconds. The performance of the engine reached 95% C* efficiency. The temperature on the Haynes chamber remained well below established material limits, with the exception of one localized hot spot. These results demonstrate that both the coaxial liquid-on-liquid pintle injector design and fuel duct concepts are viable for the intended application. The thruster headend design maintained cryogenic injection temperatures while firing, which validates the selected injector design approach for minimal heat soak-back. Also, off -nominal operation without adversely impacting the thermal response of the engine showed the robustness of the duct design, a key design feature for this application. By injecting fuel into the duct, the throat temperatures are manageable, yet the split of fuel through the cooling duct does not compromise the overall combstion efficiency, which indicates that, provided proper design refinement, such a concept could be applied to a high-performance version of the thruster

    NASA Ares I Launch Vehicle Roll and Reaction Control Systems Lessons Learned

    No full text
    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The lessons learned documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing with special emphasis on each task order. In summary, this paper attempts to capture key lessons learned that should be helpful in the development of future launch vehicle RCS designs
    corecore