56 research outputs found

    Regular modes in rotating stars

    Full text link
    Despite more and more observational data, stellar acoustic oscillation modes are not well understood as soon as rotation cannot be treated perturbatively. In a way similar to semiclassical theory in quantum physics, we use acoustic ray dynamics to build an asymptotic theory for the subset of regular modes which are the easiest to observe and identify. Comparisons with 2D numerical simulations of oscillations in polytropic stars show that both the frequency and amplitude distributions of these modes can accurately be described by an asymptotic theory for almost all rotation rates. The spectra are mainly characterized by two quantum numbers; their extraction from observed spectra should enable one to obtain information about stellar interiors.Comment: 5 pages, 4 figures, discussion adde

    Regulation of Skeletal Muscle Ca 2+ Release Channel (Ryanodine Receptor) by Ca 2+ and Monovalent Cations and Anions

    Get PDF
    The effects of ionic composition and strength on rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) activity were investigated in vesicle-45Ca2+ flux, single channel and [3H]ryanodine binding measurements. In <0.01 microM Ca2+ media, the highest 45Ca2+ efflux rate was measured in 0.25 M choline-Cl medium followed by 0.25 M KCl, choline 4-morpholineethanesulfonic acid (Mes), potassium 1,4-piperazinediethanesulfonic acid (Pipes), and K-Mes medium. In all five media, the 45Ca2+ efflux rates were increased when the free [Ca2+] was raised from <0.01 microM to 20 microM and decreased as the free [Ca2+] was further increased to 1 mM. An increase in [KCl] augmented Ca2+-gated single channel activity and [3H]ryanodine binding. In [3H]ryanodine binding measurements, bell-shaped Ca2+ activation/inactivation curves were obtained in media containing different monovalent cations (Li+, Na+, K+, Cs+, and choline+) and anions (Cl-, Mes-, and Pipes-). In choline-Cl medium, substantial levels of [3H]ryanodine binding were observed at [Ca2+] <0.01 microM. Replacement of Cl- by Mes- or Pipes- reduced [3H]ryanodine binding levels at all [Ca2+]. In all media, the Ca2+-dependence of [3H]ryanodine binding could be well described assuming that the skeletal muscle ryanodine receptor possesses cooperatively interacting high-affinity Ca2+ activation and low-affinity Ca2+ inactivation sites. AMP primarily affected [3H]ryanodine binding by decreasing the apparent affinity of the Ca2+ inactivation site(s) for Ca2+, while caffeine increased the apparent affinity of the Ca2+ activation site for Ca2+. Competition studies indicated that ionic composition affected Ca2+-dependent receptor activity by at least three different mechanisms: (i) competitive binding of Mg2+ and monovalent cations to the Ca2+ activation sites, (ii) binding of divalent cations to the Ca2+ inactivation sites, and (iii) binding of anions to specific anion regulatory sites

    Ruthenium Red Modifies the Cardiac and Skeletal Muscle Ca 2+ Release Channels (Ryanodine Receptors) by Multiple Mechanisms

    Get PDF
    The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs

    Probing the Role of Negatively Charged Amino Acid Residues in Ion Permeation of Skeletal Muscle Ryanodine Receptor

    Get PDF
    Sequence comparison suggests that the ryanodine receptors (RyRs) have pore architecture similar to that of the bacterial K+ channel KcsA. The lumenal loop linking the two most C-terminal transmembrane spanning segments in the RyRs has a predicted pore helix and an amino acid motif (GGGIG) similar to the selectivity filter (TVGYG) of KcsA identified by x-ray analysis. The RyRs have many negatively charged amino acid residues in the two regions linking the GGGIG motif and predicted pore helix with the two most C-terminal transmembrane spanning segments. We tested the role of these residues by generating single-site mutants, focusing on amino acid residues conserved among the mammalian RyRs. Replacement of two acidic residues immediately after the GGGIG motif in skeletal muscle ryanodine receptor (RyR1-D4899 and -E4900) with asparagine and glutamine profoundly affected ion permeation and selectivity. By comparison, mutagenesis of aspartate and glutamate residues in the putative linker regions showed a K+ conductance and selectivity for Ca2+ compared to K+ (PCa/PK) close to wild-type. The results show that the negatively charged carboxyl oxygens of D4899 and E4900 side chains are major determinants of RyR ion conductance and selectivity

    Regulation of ryanodine receptors by sphingosylphosphorylcholine: Involvement of both calmodulin-dependent and -independent mechanisms

    Get PDF
    Sphingosylphosphorylcholine (SPC), a lipid mediator with putative second messenger functions, has been reported to regulate ryanodine receptors (RyRs), Ca2+ channels of the sarco/endoplasmic reticulum. RyRs are also regulated by the ubiquitous Ca2+ sensor calmodulin (CaM), and we have previously shown that SPC disrupts the complex of CaM and the peptide corresponding to the CaM-binding domain of the skeletal muscle Ca2+ release channel (RyR1). Here we report that SPC also displaces Ca2+-bound CaM from the intact RyR1, which we hypothesized might lead to channel activation by relieving the negative feedback Ca2+CaM exerts on the channel. We could not demonstrate such channel activation as we have found that SPC has a direct, CaM-independent inhibitory effect on channel activity, confirmed by both single channel measurements and [3H]ryanodine binding assays. In the presence of Ca2+CaM, however, the addition of SPC did not reduce [3H]ryanodine binding, which we could explain by assuming that the direct inhibitory action of the sphingolipid was negated by the simultaneous displacement of inhibitory Ca2+CaM. Additional experiments revealed that RyRs are unlikely to be responsible for SPC-elicited Ca2+ release from brain microsomes, and that SPC does not exert detergent-like effects on sarcoplasmic reticulum vesicles. We conclude that regulation of RyRs by SPC involves both CaM-dependent and -independent mechanisms, thus, the sphingolipid might play a pysiological role in RyR regulation, but channel activation previously attributed to SPC is unlikely

    Single Channel Properties of Heterotetrameric Mutant RyR1 Ion Channels Linked to Core Myopathies

    Get PDF
    Skeletal muscle excitation-contraction coupling involves activation of homotetrameric ryanodine receptor ion channels (RyR1s), resulting in the rapid release of Ca2+ from the sarcoplasmic reticulum. Previous work has shown that Ca2+ release is impaired by mutations in RyR1 linked to Central Core Disease and Multiple Minicore Disease. We studied the consequences of these mutations on RyR1 function, following their expression in human embryonic kidney 293 cells and incorporation in lipid bilayers. RyR1-G4898E, -G4898R, and -ΔV4926/I4927 mutants in the C-terminal pore region of RyR1 and N-terminal RyR1-R110W/L486V mutant all showed negligible Ca2+ permeation and loss of Ca2+-dependent channel activity but maintained reduced K+ conductances. Co-expression of wild type and mutant RyR1s resulted in Ca2+-dependent channel activities that exhibited intermediate Ca2+ selectivities compared with K+, which suggested the presence of tetrameric RyR1 complexes composed of wild type and mutant subunits. The number of wild-type subunits to maintain a functional heterotetrameric channel differed among the four RyR1 mutants. The results indicate that homozygous RyR1 mutations associated with core myopathies abolish or greatly reduce sarcoplasmic reticulum Ca2+ release during excitation-contraction coupling. They further suggest that in individuals, expressing wild type and mutant alleles, a substantial portion of RyR1 channels is able to release Ca2+ from sarcoplasmic reticulum

    Calmodulin Binding and Inhibition of Cardiac Muscle Calcium Release Channel (Ryanodine Receptor)

    Get PDF
    Metabolically (35)S-labeled calmodulin (CaM) was used to determine the CaM binding properties of the cardiac ryanodine receptor (RyR2) and to identify potential channel domains for CaM binding. In addition, regulation of RyR2 by CaM was assessed in [(3)H]ryanodine binding and single-channel measurements. Cardiac sarcoplasmic reticulum vesicles bound approximately four CaM molecules per RyR2 tetramer in the absence of Ca(2+); in the presence of 100 microm Ca(2+), the vesicles bound 7.5 CaM molecules per tetramer. Purified RyR2 bound approximately four [(35)S]CaM molecules per RyR tetramer, both in the presence and absence of Ca(2+). At least four CaM binding domains were identified in [(35)S]CaM overlays of fusion proteins spanning the full-length RyR2. The affinity (but not the stoichiometry) of CaM binding was altered by redox state as controlled by the presence of either GSH or GSSG. Inhibition of RyR2 activity by CaM was influenced by Ca(2+) concentration, redox state, and other channel modulators. Parallel experiments with the skeletal muscle isoform showed major differences in the CaM binding properties and regulation by CaM of the skeletal and cardiac ryanodine receptors

    Molecular Basis of Calmodulin Binding to Cardiac Muscle Ca 2 + Release Channel (Ryanodine Receptor)

    Get PDF
    Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM

    Different Regions in Skeletal and Cardiac Muscle Ryanodine Receptors Are Involved in Transducing the Functional Effects of Calmodulin

    Get PDF
    Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2

    Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels

    Get PDF
    The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [35S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca2+ concentrations from <0.01 to 100 ÎĽM. At 0.15 ÎĽM Ca2+, [35S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [35S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 ÎĽM Ca2+ the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2
    • …
    corecore