16 research outputs found

    Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway

    Get PDF
    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin\u27s potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin\u27s antifungal activity-mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections

    The Antitumorigenic Function of EGFR in Metastatic Breast Cancer is Regulated by Expression of Mig6

    Get PDF
    Numerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade. We previously established that overexpression of EGFR is sufficient for formation of in situ primary tumors by otherwise nontransformed murine mammary gland cells. Induction of epithelial-mesenchymal transition (EMT) is sufficient to drive the metastasis of these EGFR-transformed tumors. Examining growth factor receptor expression across this and other models revealed a potent downregulation of EGFR through metastatic progression. Consistent with diminution of EGFR following EMT and metastasis EGF stimulation changes from a proliferative to an apoptotic response in in situ versus metastatic tumor cells, respectively. Furthermore, overexpression of EGFR in metastatic MDA-MB-231 BC cells promoted their antitumorigenic response to EGF in three dimensional (3D) metastatic outgrowth assays. In line with the paradoxical function of EGFR through EMT and metastasis we demonstrate that the EGFR inhibitory molecule, Mitogen Induced Gene-6 (Mig6), is tumor suppressive in in situ tumor cells. However, Mig6 expression is absolutely required for prevention of apoptosis and ultimate metastasis of MDA-MB-231 cells. Further understanding of the paradoxical function of EGFR between primary and metastatic tumors will be essential for application of its targeted molecular therapies in BC

    Integrating Data Science Tools into a Graduate Level Data Management Course

    Get PDF
    Objective: This paper describes a project to revise an existing research data management (RDM) course to include instruction in computer skills with robust data science tools. Setting: A Carnegie R1 university. Brief Description: Graduate student researchers need training in the basic concepts of RDM. However, they generally lack experience with robust data science tools to implement these concepts holistically. Two library instructors fundamentally redesigned an existing research RDM course to include instruction with such tools. The course was divided into lecture and lab sections to facilitate the increased instructional burden. Learning objectives and assessments were designed at a higher order to allow students to demonstrate that they not only understood course concepts but could use their computer skills to implement these concepts. Results: Twelve students completed the first iteration of the course. Feedback from these students was very positive, and they appreciated the combination of theoretical concepts, computer skills and hands-on activities. Based on student feedback, future iterations of the course will include more “flipped” content including video lectures and interactive computer tutorials to maximize active learning time in both lecture and lab

    Considerations for Where to Publish Your Work

    Get PDF

    Host-Mediated Phosphorylation of Type III Effector AvrPto Promotes Pseudomonas Virulence and Avirulence in Tomato

    No full text
    The AvrPto protein from Pseudomonas syringae pv tomato is delivered into plant cells by the bacterial type III secretion system, where it either promotes host susceptibility or, in tomato plants expressing the Pto kinase, elicits disease resistance. Using two-dimensional gel electrophoresis, we obtained evidence that AvrPto is phosphorylated when expressed in plant leaves. In vitro phosphorylation of AvrPto by plant extracts occurs independently of Pto and is due to a kinase activity that is conserved in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), and Arabidopsis thaliana. Three Ser residues clustered in the C-terminal 18 amino acids of AvrPto were identified in vitro as putative phosphorylation sites, and one site at S149 was directly confirmed as an in vivo phosphorylation site by mass spectrometry. Substitution of Ala for S149 significantly decreased the ability of AvrPto to enhance disease symptoms and promote growth of P. s. tomato in susceptible tomato leaves. In addition, S149A significantly decreased the avirulence activity of AvrPto in resistant tomato plants. Our observations support a model in which AvrPto has evolved to mimic a substrate of a highly conserved plant kinase to enhance its virulence activity. Furthermore, residues of AvrPto that promote virulence are also monitored by plant defenses

    Purdue Libraries Graduate Student Services Task Force

    Get PDF
    This is a findings report generated by a Purdue University Libraries Learning Council Task Force on graduate student services

    Transcriptome Profiling Identifies Multiplexin as a Target of SAGA Deubiquitinase Activity in Glia Required for Precise Axon Guidance During Drosophila Visual Development

    No full text
    The Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex is a transcriptional coactivator with histone acetylase and deubiquitinase activities that plays an important role in visual development and function. In Drosophila melanogaster, four SAGA subunits are required for the deubiquitination of monoubiquitinated histone H2B (ubH2B): Nonstop, Sgf11, E(y)2, and Ataxin 7. Mutations that disrupt SAGA deubiquitinase activity cause defects in neuronal connectivity in the developing Drosophila visual system. In addition, mutations in SAGA result in the human progressive visual disorder spinocerebellar ataxia type 7 (SCA7). Glial cells play a crucial role in both the neuronal connectivity defect in nonstop and sgf11 flies, and in the retinal degeneration observed in SCA7 patients. Thus, we sought to identify the gene targets of SAGA deubiquitinase activity in glia in the Drosophila larval central nervous system. To do this, we enriched glia from wild-type, nonstop, and sgf11 larval optic lobes using affinity-purification of KASH-GFP tagged nuclei, and then examined each transcriptome using RNA-seq. Our analysis showed that SAGA deubiquitinase activity is required for proper expression of 16% of actively transcribed genes in glia, especially genes involved in proteasome function, protein folding and axon guidance. We further show that the SAGA deubiquitinase-activated gene Multiplexin (Mp) is required in glia for proper photoreceptor axon targeting. Mutations in the human ortholog of Mp, COL18A1, have been identified in a family with a SCA7-like progressive visual disorder, suggesting that defects in the expression of this gene in SCA7 patients could play a role in the retinal degeneration that is unique to this ataxia
    corecore