26 research outputs found

    Cell and molecular transitions during efficient dedifferentiation

    Get PDF
    Dedifferentiation is a critical response to tissue damage, yet is not well understood, even at a basic phenomenological level. Developing Dictyostelium cells undergo highly efficient dedifferentiation, completed by most cells within 24 hr. We use this rapid response to investigate the control features of dedifferentiation, combining single cell imaging with high temporal resolution transcriptomics. Gene expression during dedifferentiation was predominantly a simple reversal of developmental changes, with expression changes not following this pattern primarily associated with ribosome biogenesis. Mutation of genes induced early in dedifferentiation did not strongly perturb the reversal of development. This apparent robustness may arise from adaptability of cells: the relative temporal ordering of cell and molecular events was not absolute, suggesting cell programmes reach the same end using different mechanisms. In addition, although cells start from different fates, they rapidly converged on a single expression trajectory. These regulatory features may contribute to dedifferentiation responses during regeneration

    AKT and SGK kinases regulate cell migration by altering Scar/WAVE complex activation and Arp2/3 complex recruitment

    Get PDF
    Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation

    Competition between chemoattractants causes unexpected complexity and can explain negative chemotaxis

    Get PDF
    Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors

    The role of ADP-ribosylation in regulating DNA interstrand crosslink repair

    Get PDF
    ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches identify a protein that contains a permutated macrodomain (Aprataxin/APLF-and-PNKP-Like protein; APL). Structural analysis reveals permutated macrodomains retain features associated with ADP-ribose interactions and APL is capable of binding poly-ADP-ribose through its macrodomain. APL is enriched in chromatin in response to cisplatin, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL, and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells due to redundant signalling by the DSB-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify NHEJ can function to resolve this form of DNA damage in the absence of Adprt2

    Glioblastoma extracellular vesicles influence glial cell hyaluronic acid deposition to promote invasiveness

    Get PDF
    Background. Infiltration of glioblastoma (GBM) throughout the brain leads to its inevitable recurrence following standard-of-care treatments, such as surgical resection, chemo- and radio-therapy. A deeper understanding of the mechanisms invoked by GMB to infiltrate the brain is needed to develop approaches to contain the disease and reduce recurrence. The aim of this study was to discover mechanisms through which extracellular vesicles (EVs) released by GBM influence the brain microenvironment to facilitate infiltration, and to determine how altered extracellular matrix (ECM) deposition by glial cells might contribute to this. Methods. CRISPR was used to delete genes, previously established to drive carcinoma invasiveness and EV production, from patient-derived primary and GBM cell lines. We purified and characterised EVs released by these cells, assessed their capacity to foster pro-migratory microenvironments in mouse brain slices, and evaluated the contribution made by astrocyte-derived extracellular matrix (ECM) to this. Finally, we determined how CRISPR-mediated deletion of genes, which we had found to control EV-mediated communication between GBM cells and astrocytes, influenced GBM infiltration when orthotopically injected into CD1-nude mice. Results. GBM cells expressing a p53 mutant (p53 273H) with established pro-invasive gain-of-function release EVs containing a sialomucin, podocalyxin (PODXL), which encourages astrocytes to deposit ECM with increased levels of hyaluronic acid (HA). This HA-rich ECM, in turn, promotes migration of GBM cells. Consistently, CRISPR-mediated deletion of PODXL opposes infiltration of GBM in vivo. Conclusions This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue. Conclusions. This work describes several key components of an EV-mediated mechanism though which GBM cells educate astrocytes to support infiltration of the surrounding healthy brain tissue

    Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis

    Get PDF
    Chemotaxis, where cell movement is steered by chemical gradients, is a widespread and essential way of organising cell behaviour. But where do the instructions come from – who makes gradients, and how are they controlled? We discuss the emerging concept that chemotactic cells often create attractant gradients at the same time as responding to them. This self-guidance is more robust, works across greater distances, and is more informative about the local environment than passive responses. Several mechanisms can establish autonomous gradients. Best known are self-generated gradients, in which the cells degrade a widespread attractant, but cells also produce repellents and ‘relay’ by secreting fresh attractant after stimulation. Understanding how cells make and interpret their own chemoattractant gradients is fundamental to understanding the spatial patterns seen in all organisms
    corecore