617 research outputs found

    Quantum Gravity coupled to Matter via Noncommutative Geometry

    Full text link
    We show that the principal part of the Dirac Hamiltonian in 3+1 dimensions emerges in a semi-classical approximation from a construction which encodes the kinematics of quantum gravity. The construction is a spectral triple over a configuration space of connections. It involves an algebra of holonomy loops represented as bounded operators on a separable Hilbert space and a Dirac type operator. Semi-classical states, which involve an averaging over points at which the product between loops is defined, are constructed and it is shown that the Dirac Hamiltonian emerges as the expectation value of the Dirac type operator on these states in a semi-classical approximation.Comment: 15 pages, 1 figur

    Extensions of C*-dynamical systems to systems with complete transfer operators

    Full text link
    Starting from an arbitrary endomorphism α\alpha of a unital C*-algebra AA we construct a bigger C*-algebra BB and extend α\alpha onto BB in such a way that the extended endomorphism α\alpha has a unital kernel and a hereditary range, i.e. there exists a unique non-degenerate transfer operator for (B,α)(B,\alpha), called the complete transfer operator. The pair (B,α)(B,\alpha) is universal with respect to a suitable notion of a covariant representation and depends on a choice of an ideal in AA. The construction enables a natural definition of the crossed product for arbitrary α\alpha.Comment: Compressed and submitted version, 9 page

    Estimating Urban Households’ Willingness-to-Pay for Upland Forest Restoration in Vietnam

    Get PDF
    Increased urbanization coupled with increased reliance of urban communities on rural areas for ecosystem service provision is a challenge faced by many nations. The ability of urban households to directly support restoration efforts in surrounding rural regions represents an underappreciated funding stream for ecological restoration. This study explored the willingness of urban households to support forest restoration in Vietnam. We surveyed 211 households (HHs) in the capital city Hanoi, Vietnam. A Maximum Likelihood Estimator (MLE) model allowed us to obtain the parameters of our model and quantify mean Willingness-to-Pay (WTP) for a program of forest restoration in addition to identifying factors influencing the decision of WTP. Generally, over forty percent of the households surveyed are willing to pay for forest restoration and the mean value of WTP is 37,830 VND ($1.73) per household per month. WTP depends on endogenous and exogenous factors including level of education, income, female-to-male ratio in the household, attitude toward payment for monthly electricity consumption, and awareness of payment for environmental service. Our results suggest that urban household’s demand for forest restoration is real, and represents an untapped source of restoration funding. Policy-makers should take actions to apply charges on water bills to turn this potential into reality for restoration projects in Vietnam if the benefits from restoration outweigh the costs based on our findings

    On Semi-Classical States of Quantum Gravity and Noncommutative Geometry

    Full text link
    We construct normalizable, semi-classical states for the previously proposed model of quantum gravity which is formulated as a spectral triple over holonomy loops. The semi-classical limit of the spectral triple gives the Dirac Hamiltonian in 3+1 dimensions. Also, time-independent lapse and shift fields emerge from the semi-classical states. Our analysis shows that the model might contain fermionic matter degrees of freedom. The semi-classical analysis presented in this paper does away with most of the ambiguities found in the initial semi-finite spectral triple construction. The cubic lattices play the role of a coordinate system and a divergent sequence of free parameters found in the Dirac type operator is identified as a certain inverse infinitesimal volume element.Comment: 31 pages, 10 figure

    A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    Full text link
    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3_{3} crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8\%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0\% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~μ\muA.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1, submitted to NIM

    'Schwinger Model' on the Fuzzy Sphere

    Full text link
    In this paper, we construct a model of spinor fields interacting with specific gauge fields on fuzzy sphere and analyze the chiral symmetry of this 'Schwinger model'. In constructing the theory of gauge fields interacting with spinors on fuzzy sphere, we take the approach that the Dirac operator DqD_q on q-deformed fuzzy sphere SqF2S_{qF}^2 is the gauged Dirac operator on fuzzy sphere. This introduces interaction between spinors and specific one parameter family of gauge fields. We also show how to express the field strength for this gauge field in terms of the Dirac operators DqD_q and DD alone. Using the path integral method, we have calculated the 2n2n-point functions of this model and show that, in general, they do not vanish, reflecting the chiral non-invariance of the partition function.Comment: Minor changes, typos corrected, 18 pages, to appear in Mod. Phys. Lett.

    The Index of (White) Noises and their Product Systems

    Full text link
    (See detailed abstract in the article.) We single out the correct class of spatial product systems (and the spatial endomorphism semigroups with which the product systems are associated) that allows the most far reaching analogy in their classifiaction when compared with Arveson systems. The main differences are that mere existence of a unit is not it sufficient: The unit must be CENTRAL. And the tensor product under which the index is additive is not available for product systems of Hilbert modules. It must be replaced by a new product that even for Arveson systems need not coincide with the tensor product

    Weak charge form factor and radius of 208Pb through parity violation in electron scattering

    Get PDF
    We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm1^{-1}. We find F_W(q) =0.204 \pm 0.028 (exp) \pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \pm 0.181 (exp) \pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm$, from R_W. Here there is only a very small error (strange) from possible strange quark contributions. We find R_n to be slightly smaller than R_W because of the nucleon's size. Finally, we find a neutron skin thickness of R_n-R_p=0.302\pm 0.175 (exp) \pm 0.026 (model) \pm 0.005 (strange) fm, where R_p is the point proton radius.Comment: 5 pages, 1 figure, published in Phys Rev. C. Only one change in this version: we have added one author, also to metadat
    corecore