4 research outputs found

    GENIE Flight Test Results and System Overview

    Get PDF
    NASA has envisioned a suite of lander test vehicles that will be flown in Earth s atmosphere to incrementally demonstrate applicable lunar lander performance in the terrestrial environment. As each terrestrial rocket progresses in maturity, relevant space flight technology matures to a higher technology readiness level, preparing it for inclusion on a future lunar lander design.. NASA s "Project M" lunar mission concept flew its first terrestrial rocket, RR1, in June 2010 in Caddo Mills, Texas. The Draper Laboratory built GENIE (Guidance Embedded Navigator Integration Environment) successfully demonstrated accurate, real time, embedded performance of Project M navigation and guidance algorithms in a highly dynamic environment. The RR1 vehicle, built by Armadillo Aerospace, performed a successful 60 second free flight and gave the team great confidence in Project M s highly reliable and robust GNC system design and implementation. This paper provides an overview of the GENIE system and describes recent flight performance test results onboard the RR1 terrestrial rocket

    Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    Get PDF
    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycl

    Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    Get PDF
    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models

    A Self Contained Method for Safe and Precise Lunar Landing

    No full text
    The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon
    corecore