5 research outputs found

    Development of the combined method of hardening of the surface of aluminium

    Get PDF
    Представлены результаты, полученные при исследовании фазового и элементного состава, дефектной субструктуры поверхности технически чистого алюминия марки А7, подвергнутого комбинированной обработке, сочетающей напыление металлической пленки, электронно-пучковое перемешивание системы пленка/подложка и последующее азотирование в плазме газового разряда низкого давления. Выполнен анализ закономерностей, выявлены режимы воздействия, позволяющие кратно повышать микротвердость и износостойкость материала.The results are presented, received at research of phase and elemental composition, defective substructureof surface technically pure aluminium of the A7, subjected to the combined processing combining spraying metalfilm, electron-beam mixing of system film/substrate and subsequent nitriding in plasma of the gas discharge of lowpressure. The analysis of regularities is made, revealed the modes of influence allowing multiple to raise amicrohardness and wear resistance of material

    Serum calcification propensity predicts all-cause mortality in predialysis CKD

    No full text
    Medial arterial calcification is accelerated in patients with CKD and strongly associated with increased arterial rigidity and cardiovascular mortality. Recently, a novel in vitro blood test that provides an overall measure of calcification propensity by monitoring the maturation time (T50) of calciprotein particles in serum was described. We used this test to measure serum T50 in a prospective cohort of 184 patients with stages 3 and 4 CKD, with a median of 5.3 years of follow-up. At baseline, the major determinants of serum calcification propensity included higher serum phosphate, ionized calcium, increased bone osteoclastic activity, and lower free fetuin-A, plasma pyrophosphate, and albumin concentrations, which accounted for 49% of the variation in this parameter. Increased serum calcification propensity at baseline independently associated with aortic pulse wave velocity in the complete cohort and progressive aortic stiffening over 30 months in a subgroup of 93 patients. After adjustment for demographic, renal, cardiovascular, and biochemical covariates, including serum phosphate, risk of death among patients in the lowest T50 tertile was more than two times the risk among patients in the highest T50 tertile (adjusted hazard ratio, 2.2; 95% confidence interval, 1.1 to 5.4; P=0.04). This effect was lost, however, after additional adjustment for aortic stiffness, suggesting a shared causal pathway. Longitudinally, serum calcification propensity measurements remained temporally stable (intraclass correlation=0.81). These results suggest that serum T50 may be helpful as a biomarker in designing methods to improve defenses against vascular calcification

    Reactive species interactome alterations in oocyte donation pregnancies in the absence and presence of pre-eclampsia

    Get PDF
    In pregnancy, maternal physiology is subject to considerable adaptations, including alterations in cardiovascular and metabolic function as well as development of immunological tolerance towards the fetus. In an oocyte donation pregnancy, the fetus is fully allogeneic towards the mother, since it carries both oocyte donor antigens and paternal antigens. Therefore, oocyte donation pregnancies result in an immunologically challenging pregnancy, which is reflected by a higher-than-normal risk to develop pre-eclampsia. Based on the allogeneic conditions in oocyte donation pregnancies, we hypothesized that this situation may translate into alterations in concentration of stable readouts of constituents of the reactive species interactome (RSI) compared to normal pregnancies, especially serum free thiols, nitric oxide (NO) and hydrogen sulfide (H₂S) related metabolites. Indeed, total free thiol levels and nitrite (NO₂-) concentrations were significantly lower whereas protein-bound NO and sulfate (SO₄2-) concentrations were significantly higher in both oocyte donation and naturally conceived pregnancies complicated by pre-eclampsia. The increased concentrations of nitrite observed in uncomplicated oocyte donation pregnancies suggest that endothelial NO production is compensatorily enhanced to lower vascular tone. More research is warranted on the role of the RSI and bioenergetic status in uncomplicated oocyte donation pregnancies and oocyte donation pregnancies complicated by pre-eclampsia.</p

    Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

    No full text
    Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    No full text
    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3 1019 m-3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre.Peer reviewe
    corecore