36 research outputs found

    From fossils to mind

    Get PDF
    Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior

    A New Saurolophine Dinosaur from the Latest Cretaceous of Far Eastern Russia

    Get PDF
    Background: Four main dinosaur sites have been investigated in latest Cretaceous deposits from the Amur/Heilongjiang Region: Jiayin and Wulaga in China (Yuliangze Formation), Blagoveschensk and Kundur in Russia (Udurchukan Formation). More than 90% of the bones discovered in these localities belong to hollow-crested lambeosaurine saurolophids, but flat-headed saurolophines are also represented: Kerberosaurus manakini at Blagoveschensk and Wulagasaurus dongi at Wulaga. Methodology/Principal Findings: Herein we describe a new saurolophine dinosaur, Kundurosaurus nagornyi gen. et sp. nov. from the Udurchukan Formation (Maastrichtian) of Kundur, represented by disarticulated cranial and postcranial material. This new taxon is diagnosed by four autapomorphies. Conclusions/Significance: A phylogenetic analysis of saurolophines indicates that Kundurosaurus nagornyi is nested within a rather robust clade including Edmontosaurus spp. Saurolophus spp. and Prosaurolophus maximus, possibly as a sister-taxon for Kerberosaurus manakini also from the Udurchukan Formation of Far Eastern Russia. The high diversity and mosaic distribution of Maastrichtian hadrosaurid faunas in the Amur-Heilongjiang region are the result of a complex palaeogeographical history and imply that many independent hadrosaurid lineages dispersed without any problem between western America and eastern Asia at the end of the Cretaceous. © 2012 Godefroit et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Brain of ornithopods and new characters for phylogenetic analyses

    No full text
    info:eu-repo/semantics/publishe
    corecore