10,687 research outputs found

    Dispersive Response of a Disordered Superconducting Quantum Metamaterial

    Full text link
    We consider a disordered quantum metamaterial formed by an array of superconducting flux qubits coupled to microwave photons in a cavity. We map the system on the Tavis-Cummings model accounting for the disorder in frequencies of the qubits. The complex transmittance is calculated with the parameters taken from state-of-the-art experiments. We demonstrate that photon phase shift measurements allow to distinguish individual resonances in the metamaterial with up to 100 qubits, in spite of the decoherence spectral width being remarkably larger than the effective coupling constant. Our simulations are in agreement with the results of the recently reported experiment.Comment: 10 pages, 4 figure

    A possible Efimov trimer state in a 3-component lithium-6 mixture

    Full text link
    We consider the Efimov trimer theory as a possible framework to explain recently observed losses by inelastic three-body collisions in a three-hyperfine-component ultracold mixture of lithium 6. Within this framework, these losses would arise chiefly from the existence of an Efimov trimer bound state below the continuum of free triplets of atoms, and the loss maxima (at certain values of an applied magnetic field) would correspond to zero-energy resonances where the trimer dissociates into three free atoms. Our results show that such a trimer state is indeed possible given the two-body scattering lengths in the three-component lithium mixture, and gives rise to two zero-energy resonances. The locations of these resonances appear to be consistent with observed losses.Comment: 4 pages, 2 figures. Updated figures, equations and references as in the published version. Note that there is a 1/2 factor missing in Eq. (6) of the published versio

    Crossover trimers connecting continuous and discrete scaling regimes

    Full text link
    For a system of two identical fermions and one distinguishable particle interacting via a short-range potential with a large s-wave scattering length, the Efimov trimers and Kartavtsev-Malykh trimers exist in different regimes of the mass ratio. The Efimov trimers are known to exhibit a discrete scaling invariance, while the Kartavtsev-Malykh trimers feature a continuous scaling invariance. We point out that a third type of trimers, "crossover trimers", exist universally regardless of short-range details of the potential. These crossover trimers have neither the discrete nor continuous scaling invariance. We show that the crossover trimers continuously connect the discrete and continuous scaling regimes as the mass ratio and the scattering length are varied. We identify the regions for the Kartavtsev-Malykh trimers, Efimov trimers, crossover trimers, and non-universal trimers as a function of the mass ratio and the s-wave scattering length by investigating the scaling property and model-independence of the trimers.Comment: 14 pages, 9 figure

    Valence Instability of YbCu2_2Si2_2 through its quantum critical point

    Get PDF
    We report Resonant inelastic x-ray scattering measurements (RIXS) in YbCu2_2Si2_2 at the Yb L3_{3} edge under high pressure (up to 22 GPa) and at low temperatures (down to 7 K) with emphasis on the vicinity of the transition to a magnetic ordered state. We find a continuous valence change towards the trivalent state with increasing pressure but with a pronounced change of slope close to the critical pressure. Even at 22 GPa the Yb+3^{+3} state is not fully achieved. The pressure where this feature is observed decreases as the temperature is reduced to 9 GPa at 7K, a value close to the critical pressure (\itshape{p\normalfont{c_c}}\normalfont \approx 7.5 GPa) where magnetic order occurs. The decrease in the valence with decreasing temperature previously reported at ambient pressure is confirmed and is found to be enhanced at higher pressures. We also compare the f electron occupancy between YbCu2_2Si2_2 and its Ce-counterpart, CeCu2_2Si2_2

    Binary Patterns in Binary Cube-Free Words: Avoidability and Growth

    Get PDF
    The avoidability of binary patterns by binary cube-free words is investigated and the exact bound between unavoidable and avoidable patterns is found. All avoidable patterns are shown to be D0L-avoidable. For avoidable patterns, the growth rates of the avoiding languages are studied. All such languages, except for the overlap-free language, are proved to have exponential growth. The exact growth rates of languages avoiding minimal avoidable patterns are approximated through computer-assisted upper bounds. Finally, a new example of a pattern-avoiding language of polynomial growth is given.Comment: 18 pages, 2 tables; submitted to RAIRO TIA (Special issue of Mons Days 2012

    Tunable pseudogap Kondo effect and quantum phase transitions in Aharonov-Bohm interferometers

    Full text link
    We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. The system can be described by an effective one-impurity Anderson model with an energy- and flux-dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect. The conductance and transmission phase shifts reflect a nontrivial interplay between wave interference and interactions, providing clear signatures of quantum phase transitions between Kondo and non-Kondo ground states.Comment: Published versio

    Nurturing the young shoots of talent: Using action research for exploration and theory building

    Get PDF
    This is an Author's Accepted Manuscript of an article published in European Early Childhood Education Research Journal, 19(4), 433-450, 2011, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/1350293X.2011.623515.This paper reports the outcomes of a set of action research projects carried out by teacher researchers in 14 local education authorities in England, working collaboratively with university tutors, over a period of three years. The common aim of all the projects was to explore practical ways of nurturing the gifts and talents of children aged four–seven years. The project was funded by the Department of Education and Skills in England as part of the government's gifted and talented programme. The project teachers felt that their understanding of issues relating to nurturing the gifts and talents of younger children was enhanced through their engagement in the project. It was possible to map the findings of the projects to the English government's National Quality Standards for gifted and talented education which include: (1) identification; (2) effective provision in the classroom; (3) enabling curriculum entitlement and choice; (4) assessment for learning; (5) engaging with community, families and beyond. The findings are also analysed within the framework of good practice in educating children in the first years of schooling. Participating practitioners felt that action research offered them a suitable methodology to explore the complexity of the topic of giftedness through cycles of planning, action and reflection and personal theory building

    Non-universal Efimov Atom-Dimer Resonances in a Three-Component Mixture of 6Li

    Full text link
    We observed an enhanced atom-dimer relaxation due to the existence of Efimov states in a three-component mixture of 6Li atoms. We measured the magnetic-field dependence of the atom-dimer loss coefficient in the mixture of atoms in state |1> and dimers formed in states |2> and |3>, and found two peaks corresponding to the degeneracy points of the |23> dimer energy level and energy levels of Efimov trimers. We found that the locations of these peaks disagree with universal theory predictions, in a way that cannot be explained by non-universal two-body properties. We constructed theoretical models that characterize the non-universal three-body physics of three-component 6Li atoms in the low energy domain.Comment: 5 pages, 3 figure

    The effects of stellar winds on the magnetospheres and potential habitability of exoplanets

    Get PDF
    Context: The principle definition of habitability for exoplanets is whether they can sustain liquid water on their surfaces, i.e. that they orbit within the habitable zone. However, the planet's magnetosphere should also be considered, since without it, an exoplanet's atmosphere may be eroded away by stellar winds. Aims: The aim of this paper is to investigate magnetospheric protection of a planet from the effects of stellar winds from solar-mass stars. Methods: We study hypothetical Earth-like exoplanets orbiting in the host star's habitable zone for a sample of 124 solar-mass stars. These are targets that have been observed by the Bcool collaboration. Using two wind models, we calculate the magnetospheric extent of each exoplanet. These wind models are computationally inexpensive and allow the community to quickly estimate the magnetospheric size of magnetised Earth-analogues orbiting cool stars. Results: Most of the simulated planets in our sample can maintain a magnetosphere of ~5 Earth radii or larger. This suggests that magnetised Earth analogues in the habitable zones of solar analogues are able to protect their atmospheres and is in contrast to planets around young active M dwarfs. In general, we find that Earth-analogues around solar-type stars, of age 1.5 Gyr or older, can maintain at least a Paleoarchean Earth sized magnetosphere. Our results indicate that planets around 0.6 - 0.8 solar-mass stars on the low activity side of the Vaughan-Preston gap are the optimum observing targets for habitable Earth analogues.Comment: 8 pages, 3 figures, accepted to Astronomy and Astrophysic
    corecore