9,136 research outputs found

    Optical Feshbach resonances of Alkaline-Earth atoms in a 1D or 2D optical lattice

    Get PDF
    Motivated by a recent experiment by Zelevinsky et al. [Phys. Rev. Lett. 96, 203201], we present the theory for photoassociation and optical Feshbach resonances of atoms confined in a tight one-dimensional (1D) or two-dimensional (2D) optical lattice. In the case of an alkaline-earth intercombination resonance, the narrow natural width of the line makes it possible to observe clear manifestations of the dimensionality, as well as some sensitivity to the scattering length of the atoms. Among possible applications, a 2D lattice may be used to increase the spectroscopic resolution by about one order of magnitude. Furthermore, a 1D lattice induces a shift which provides a new way of determining the strength of a resonance by spectroscopic measurements.Comment: 12 pages, 4 figures. Typos were corrected and a connection was made to the fermionization of boson

    Relative entropy for compressible Navier-Stokes equations with density dependent viscosities and applications

    Full text link
    Recently, A. Vasseur and C. Yu have proved the existence of global entropy-weak solutions to the compressible Navier-Stokes equations with viscosities ν(ϱ)=μϱ\nu(\varrho)=\mu\varrho and λ(ϱ)=0\lambda(\varrho)=0 and a pressure law under the form p(ϱ)=aϱγp(\varrho)=a\varrho^\gamma with a>0a>0 and γ>1\gamma>1 constants. In this note, we propose a non-trivial relative entropy for such system in a periodic box and give some applications. This extends, in some sense, results with constant viscosities initiated by E. Feiersl, B.J. Jin and A. Novotny. We present some mathematical results related to the weak-strong uniqueness, convergence to a dissipative solution of compressible or incompressible Euler equations. As a by-product, this mathematically justifies the convergence of solutions of a viscous shallow water system to solutions of the inviscid shall-water system

    Experimental Study of Heat Pump Thermodynamic Cycles Using CO 2 Based Mixtures -Methodology and First Results

    Full text link
    The aim of this work is to study heat pump cycles, using CO 2 based mixtures as working fluids. Since adding other chemicals to CO 2 moves the critical point and generally equilibrium lines, it is expected that lower operating pressures as well as higher global efficiencies may be reached. A simple stage pure CO 2 cycle is used as reference, with fixed external conditions. Two scenarios are considered: water is heated from 10 {\textdegree}C to 65 {\textdegree}C for Domestic Hot Water scenario and from 30 {\textdegree}C to 35 {\textdegree}C for Central Heating scenario. In both cases, water at the evaporator inlet is set at 7 {\textdegree}C to account for such outdoor temperature conditions. In order to understand the dynamic behaviour of thermodynamic cycles with mixtures, it is essential to measure the fluid circulating composition. To this end, we have developed a non intrusive method. Online optical flow cells allow the recording of infrared spectra by means of a Fourier Transform Infra Red spectrometer. A careful calibration is performed by measuring a statistically significant number of spectra for samples of known composition. Then, a statistical model is constructed to relate spectra to compositions. After calibration, compositions are obtained by recording the spectrum in few seconds, thus allowing for a dynamic analysis. This article will describe the experimental setup and the composition measurement techniques. Then a first account of results with pure CO 2 , and with the addition of propane or R-1234yf will be given

    Anomalous scattering of light on Triton

    Get PDF
    Researchers report here the discovery of an isolated region of anomalously forward scattering materials on the surface of Triton. The researchers' best-fit Hapke parameters indicate that regolith particles in the anomalous scattering region are not only less backward scattering, but also slightly lower in single scattering albedo than average materials on Triton's surface. While it might be possible to account for such differences in terms of differences in particle size and transparency, it is also possible that the anomalous region is compositionally distinct from other terrains. It is noteworthy that, for the anomalous region, there exists a distinctively strong spatial correlation between the photometric ratios at different phase angles, and that, relative to other terrains, the anomalous region reddens at a different rate with increasing phase angle
    corecore