22 research outputs found

    Population genomic insights into invasion success in a polyphagous agricultural pest, Halyomorpha halys

    Get PDF
    Invasive species are increasingly threatening ecosystems and agriculture by rapidly expanding their range and adapting to environmental and human-imposed selective pressures. The genomic mechanisms that underlie such rapid changes remain unclear, especially for agriculturally important pests. Here, we used genome-wide polymorphisms derived from native, invasive, and intercepted samples and populations of the brown marmorated stink bug (BMSB), Halyomorpha halys, to gain insights into population genomics processes that have promoted the successful global invasion of this polyphagous pest. Our analysis demonstrated that BMSB exhibits spatial structure but admixture rates are high among introduced populations, resulting in similar levels of genomic diversity across native and introduced populations. These spatial genomic patterns suggest a complex invasion scenario, potentially with multiple bridgehead events, posing a challenge for accurately assigning BMSB incursions to their source using reduced-representation genomic data. By associating allele frequencies with the invasion status of BMSB populations, we found significantly differentiated single nucleotide polymorphisms (SNPs) located in close proximity to genes for insecticide resistance and olfaction. Comparing variations in allele frequencies among populations for outlier SNPs suggests that BMSB invasion success has probably evolved from standing genetic variation. In addition to being a major nuisance of households, BMSB has caused significant economic losses to agriculture in recent years and continues to expand its range. Despite no record of BMSB insecticide resistance to date, our results show high capacity for potential evolution of such traits, highlighting the need for future sustainable and targeted management strategies

    (2,2′-Bipyridine)bis­(3-carboxy­pyrazine-2-carboxyl­ato)copper(II) dihydrate

    Get PDF
    The title six-coordinated distorted octa­hedral complex, [Cu(C6H3N2O4)2(C10H8N2)]·2H2O, consists of two 3-carboxy­pyrazine-2-carboxyl­ate anions and one 2,2′-bipyridine ligand. There is a twofold rotation axis positioned at the CuII center. The N atoms of the pyrazine ring occupy the axial positions and two proton-transferred O atoms of tbe acid together with the two N atoms of the 2,2′-bipyridine ligand complete the equatorial plane. The inter­actions existing in the crystal structure are inter­molecular O—H⋯O hydrogen bonds, and C—H⋯O and C—O⋯π inter­actions (O⋯π =3.145 Å, C—O⋯π = 149.75°)

    Tracking the origins of the introduced terrestrial amphipod, Puhuruhuru patersoni, on sub-Antarctic Macquarie Island

    Get PDF
    The terrestrial amphipod Puhuruhuru patersoni (Amphipoda: Talitridae) was discovered on sub-Antarctic Macquarie Island in 1992. The species is only known to naturally occur on New Zealand’s South Island and some associated offshore islands. The possible routes by which the species was introduced to Macquarie Island have previously been considered based on morphology and historic activities between New Zealand and Macquarie Island. Here, we sampled across the known range for P. patersoni and generated mtDNA COI data for these specimens to investigate the likely origin of the Macquarie Island incursion. Our results showed high genetic diversity across the native range and substantially lower genetic diversity on Macquarie Island. Additionally, our phylogenetic reconstructions suggested that the source of the introduction to Macquarie Island is likely to have been from the southern region of New Zealand’s South Island

    Failure modeling of alluvial foundations due to boiling: numerical modeling versus experiments

    Get PDF
    The sheet piles are used below hydraulic structures to reduce seepage flow rate and hydraulic gradient at the outlet of such structures rested on permeable foundations. Up to now, for analysis of seepage under hydraulic structures much research work has been carried out in the form of numerical models. However, less field and laboratory works have been performed to study and compare boiling phenomena for evaluating of the numerical models. By simulating an experimental model of a sheet pile inserted in a sand foundation by computer code FLAC based on the finite difference method, the soil behavior mechanism flow has been investigated under seepage effect. The results indicate that computer code FLAC underestimated uplift pressures compared to the experimental data. In order to study the boiling, the soil treatment analyzed at the most critical condition as well. The numerical model presented in computer code FLAC, is properly able to simulate the soil and foundation behavior. Comparing the results obtained from numerical model with experimental data also confirms well, because this model predicts the boiling observations with reasonable accuracy and it was possible to predict heaving mechanism based on the stress analysis before performing the plan

    Genome-wide analysis reveals distinct global populations of pink bollworm (Pectinophora gossypiella)

    Get PDF
    The pink bollworm (Pectinophora gossypiella) is one of the world's most destructive pests of cotton. This invasive lepidopteran occurs in nearly all cotton-growing countries. Its presence in the Ord Valley of North West Australia poses a potential threat to the expanding cotton industry there. To assess this threat and better understand population structure of pink bollworm, we analysed genomic data from individuals collected in the field from North West Australia, India, and Pakistan, as well as from four laboratory colonies that originated in the United States. We identified single nucleotide polymorphisms (SNPs) using a reduced-representation, genotyping-by-sequencing technique (DArTseq). The final filtered dataset included 6355 SNPs and 88 individual genomes that clustered into five groups: Australia, India-Pakistan, and three groups from the United States. We also analysed sequences from Genbank for mitochondrial DNA (mtDNA) locus cytochrome c oxidase I (COI) for pink bollworm from six countries. We found low genetic diversity within populations and high differentiation between populations from different continents. The high genetic differentiation between Australia and the other populations and colonies sampled in this study reduces concerns about gene flow to North West Australia, particularly from populations in India and Pakistan that have evolved resistance to transgenic insecticidal cotton. We attribute the observed population structure to pink bollworm's narrow host plant range and limited dispersal between continents

    The genomic footprint of coastal earthquake uplift

    Get PDF
    Theory suggests that catastrophic earth-history events can drive rapid biological evolution, but empirical evidence for such processes is scarce. Destructive geological events such as earthquakes can represent large-scale natural experiments for inferring such evolutionary processes. We capitalized on a major prehistoric (800 yr BP) geological uplift event affecting a southern New Zealand coastline to test for the lasting genomic impacts of disturbance. Genome-wide analyses of three co-distributed keystone kelp taxa revealed that post-earthquake recolonization drove the evolution of novel, large-scale intertidal spatial genetic ‘sectors’ which are tightly linked to geological fault boundaries. Demographic simulations confirmed that, following widespread extirpation, parallel expansions into newly vacant habitats rapidly restructured genome-wide diversity. Interspecific differences in recolonization mode and tempo reflect differing ecological constraints relating to habitat choice and dispersal capacity among taxa. This study highlights the rapid and enduring evolutionary effects of catastrophic ecosystem disturbance and reveals the key role of range expansion in reshaping spatial genetic patterns

    Genomic Tools in Biological Invasions: Current State and Future Frontiers

    Get PDF
    Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community

    Pathogen inferred to have dispersed thousands of kilometres at sea, infecting multiple keystone kelp species

    No full text
    Protistan pathogens have been found to infect populations of some large brown macroalgae. Infection could reduce the ability of macroalgae to withstand hydrodynamic pressures through weakening tissues and reducing flexibility. Widespread mortality of macroalgae if disease outbreaks were to occur could have important flow-on consequences for biodiversity and ecosystem function. Recent discoveries of the protistan pathogen Maullinia infecting the ecologically keystone southern bull kelp Durvillaea in Chile, Australia, and on Marion Island, raise the possibility that this pathogen is dispersing across ocean basins with buoyant hosts. To determine whether Maullinia also infects southern bull kelp in New Zealand, samples of gall-like tissue from Durvillaea antarctica, D. poha, and D. willana were collected from intertidal sites, and genetic analyses (sequencing of partial 18S rRNA) carried out. Maullinia infections were detected in all three species of Durvillaea. Phylogenetic analyses show a close relationship of New Zealand Maullinia to M. braseltonii previously detected in Chile and on Marion Island. Based on its genetic similarity to distant lineages and its presence on buoyant hosts that have been shown to drift long distances at seas, we infer that Maullinia has dispersed across the Southern Ocean through rafting of infected bull kelp. Understanding the capacity of pathogens to disperse across oceans is critical part of forecasting and managing ecosystem responses to environmental change

    Uncovering glacial footprints and identifying phylogeographic units in the freshwater crab Potamon elbursi Pretzmann, 1962 (Decapoda: Potamidae) based on mitochondrial data

    No full text
    The current patterns of biodiversity have significantly been affected by glacial-interglacial cycles during the Pleistocene period. True freshwater crabs are considered as poor dispersers and terrestrial barriers restrict gene flow between their local populations. Recent studies, however, suggest that certain environmental conditions, such as periods of heavy rainfall and humidity, can facilitate their between-drainage dispersal and will result in the evolution of homogenous genetic patterns among different drainage systems. Here we tested this hypothesis by comparing populations of the endemic freshwater crab Potamon elbursi Pretzmann, 1962 distributed in two drainage systems, the Caspian Sea and Namak Lake, in northern Iran. Our results based on the genetic analysis of 70 new and 61 previously published sequences of the mitochondrial cytochrome oxidase subunit I gene revealed a substantial haplotype diversity in some populations and high levels of local population structuring in others. Initially, we found mixed evidence of genetic differentiation and connectivity among drainages and populations. Genetic differentiation between the two drainages only became apparent after the Sepirdood population (which belongs to the Caspian Sea drainage) was excluded. Subsequently, the two drainages showed significant genetic distinctions, with a limited gene flow between them. Our demographic analyses supported recent population bottlenecks, followed by a rapid demographic and/or spatial expansion dating back to the Pleistocene climatic fluctuations. Species distribution modelling suggests that precipitation during warm weather conditions profoundly affects the distribution of P. elbursi. This study indicates that freshwater crabs can override short land barriers under favorable weather conditions and will have conservation implications in the face of contemporary climatic fluctuations

    Uncovering glacial footprints and identifying phylogeographic units in the freshwater crab Potamon elbursi Pretzmann, 1962 (Decapoda: Potamidae) based on mitochondrial data

    No full text
    The current patterns of biodiversity have significantly been affected by glacial-interglacial cycles during the Pleistocene period. True freshwater crabs are considered as poor dispersers and terrestrial barriers restrict gene flow between their local populations. Recent studies, however, suggest that certain environmental conditions, such as periods of heavy rainfall and humidity, can facilitate their between-drainage dispersal and will result in the evolution of homogenous genetic patterns among different drainage systems. Here we tested this hypothesis by comparing populations of the endemic freshwater crab Potamon elbursi Pretzmann, 1962 distributed in two drainage systems, the Caspian Sea and Namak Lake, in northern Iran. Our results based on the genetic analysis of 70 new and 61 previously published sequences of the mitochondrial cytochrome oxidase subunit I gene revealed a substantial haplotype diversity in some populations and high levels of local population structuring in others. Initially, we found mixed evidence of genetic differentiation and connectivity among drainages and populations. Genetic differentiation between the two drainages only became apparent after the Sepirdood population (which belongs to the Caspian Sea drainage) was excluded. Subsequently, the two drainages showed significant genetic distinctions, with a limited gene flow between them. Our demographic analyses supported recent population bottlenecks, followed by a rapid demographic and/or spatial expansion dating back to the Pleistocene climatic fluctuations. Species distribution modelling suggests that precipitation during warm weather conditions profoundly affects the distribution of P. elbursi. This study indicates that freshwater crabs can override short land barriers under favorable weather conditions and will have conservation implications in the face of contemporary climatic fluctuations
    corecore