15 research outputs found

    NF-Kβ Activation in U266 Cells on Mesenchymal Stem Cells

    Get PDF
    Purpose: Mesenchymal Stem Cells (MSCs) are one of the essential members of Bone Marrow (BM) microenvironment and the cells affect normal and malignant cells in BM milieu. One of the most important hematological malignancies is Multiple Myeloma (MM). Numerous studies reported various effects of MSCs on myeloma cells. MSCs initiate various signaling pathways in myeloma cells, particularly NF-kβ. NF-kβ signaling pathway plays pivotal role in the survival, proliferation and resistance of myeloma cells to the anticancer drugs, therefore this pathway can be said to be a vital target for cancer therapy. This study examined the relationship between U266 cells and MSCs. Methods: U266 cells were cultured with Umbilical Cord Blood derived-MSCs (UCB-MSCs) and Conditioned Medium (C.M). Effect of UCB-MSCs and C.M on proliferation rate and CD54 expression of U266 cells were examined with MTT assay and Flowcytometry respectively. Furthermore, expression of CXCL1, PECAM-1, JUNB, CCL2, CD44, CCL4, IL-6, and IL-8 were analyzed by Real Time-PCR (RT-PCR). Moreover, status of p65 protein in NF-kβ pathway assessed by western blotting. Results: Our findings confirm that UCB-MSCs support U266 cells proliferation and they increase CD54 expression. In addition, we demonstrate that UCB-MSCs alter the expression of CCL4, IL-6, IL-8, CXCL1 and the levels of phosphorylated p65 in U266 cells.Conclusion: Our study provides a novel sight to the role of MSCs in the activation of NF-kβ signaling pathway. So, NF-kβ signaling pathway will be targeted in future therapies against MM

    Signaling Pathways of Receptors Involved in Platelet Activation andShedding of These Receptors in Stored Platelets

    Get PDF
    All cells encounter various signals coming from the surrounding environment and they need toreceive and respond to these signals in order to perform their functions. Cell surface receptorsare responsible for signal transduction .Platelets are blood cells which perform several functionsusing diverse receptors. Platelet concentrate is one of the most consumed blood products.However, due to the short lifespan of the platelets and platelets damage during storage, we faceshortage of platelet products. One of the damages that platelets undergo during storage is theloss of surface receptors. Since cell surface receptors are responsible for all cell functions, theloss of platelet receptors reduces the quality of platelet products. In this study, we reviewed theimportant receptors involved in platelet activation and their associated signaling pathways. Wealso looked at the platelet receptors that shed during storage and the causes of this incident.We found that GPIbα, P-selectin, CD40 and GPVI are platelet receptors that fall during plateletstorage at room temperature. Considering that GPVI and GPIbα are the most important receptorswhich involved in platelet activation, their shedding can cause decrease in platelet activationafter transfusion and decrease thrombus consistence. Shear stress and platelet contact with thecontainer wall are among the mechanisms discussed in this process, but studies in this area haveto be continued

    Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells

    Get PDF
    Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and differentiation, which is believed to be firmly adjusted through interactions between hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This microenvironment is derived from a common progenitor of mesenchymal origin and its signals should be capable of regulating the cellular memory of transcriptional situation and lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells can support hematopoiesis through release various molecules that play a crucial role in migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of patients with hematologic disorders for more effective Bone Marrow (BM) transplantation in the near future. However, considerable challenges remain on realization of how paracrine mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen with various paracrine factors in order to achieve optimal results for tissue conservation and regeneration. The aim of this review is to characterize and consider the related aspects of the ability of MSCs secretome in protection of hematopoiesis

    The Effect of Mesenchymal Stem Cell-Derived Microvesicles on Erythroid Differentiation of Umbilical Cord Blood-Derived CD34+ Cells

    Get PDF
    Purpose: Mesenchymal stem cells (MSCs) play an important role in the proliferation and differentiation of hematopoietic stem cells (HSCs) in the bone marrow via cell-to-cell contact, as well as secretion of cytokines and microvesicles (MVs). In this study, we investigated the effect of mesenchymal stem cell-derived microvesicles (MSC-MVs) on erythroid differentiation of umbilical cord blood-derived CD34+ cells. Methods: In this descriptive study, CD34+ cells were cultured with mixture of SCF (10 ng/ml) and rhEPO (5 U/ml) cytokines in complete IMDM medium as positive control group. Then, in MV1- and MV2-groups, microvesicles at 10 and 20 µg/ml concentration were added. After 72 hours, erythroid specific markers (CD71 and CD235a) and genes (HBG1, GATA1, FOG1 and NFE2) were assessed by flow cytometry and qRT-PCR, respectively. Results: The expression of specific markers of the erythroid lineages (CD71 and GPA) in the presence of different concentration of microvesicles were lower than that of the control group (P<0.001). Also, the expression of specific genes of the erythroid lineages (NFE2, FOG1, GATA1, and HBG1) was investigated in comparison to the internal control (GAPDH). Among all of them, HBG1 and FOG1 genes were significantly decreased to the control group (P<0.0001) but GATA1 and NFE2 gene expressions was not significant. Conclusion: The results of this study showed that MSC-MVs decrease the erythroid differentiation of umbilical cord blood-derived CD34+ cells. Therefore, MSC-MVs play a key role in the regulation of normal erythropoiesis

    The Angiognic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells

    No full text
    Objective Angiogenesis, the process of formation of new blood vessels, is essential for development of solid tumors. At first, it was first assumed that angiogenesis is not implicated in the development of acute myeloid leukemia (AML) as a liquid tumor. One of the most important elements in bone marrow microenvironment is mesenchymal stem cells (MSCs). These cells possess an intrinsic tropism for sites of tumor in various types of cancers and have an impact on solid tumors growth by affecting the angiogenic process. But so far, our knowledge is limited about MSCs’ role in liquid tumors angiogenesis. By increasing our knowledge about the role of MSCs on angiogenesis, new therapeutic strategies can be used to improve the status of patients with leukemia. Materials and Methods In this experimental study, HL-60, K562 and U937 cells were separately co-cultured with bone marrow derived-MSCs and after 8, 16 and 24 hours, alterations in the expression of 10 chemokine genes involved in angiogenesis, were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR). Mono-cultures of leukemia cell lines were used as controls. Results We observed that in HL-60 and K562 cells co-cultured with MSCs, the expression of CXCL10 and CXCL3 genes are increased, respectively as compared to the control cells. Also, in U937 cells co-cultured with MSCs, the expression of CXCL6 gene was upgraded. Moreover in U937 cells, CCL2 gene expression in the first 16 hours was lower than the control cells, while within 24 hours its expression augmented. Conclusion Our observations, for the first time, demonstrated that bone marrow (BM)-MSCs are able to alter the expression profile of chemokine genes involved in angiogenesis, in acute myeloid leukemia cell lines. MSCs cause different effects on angiogenesis in different leukemia cell lines; in some cases, MSCs promote angiogenesis, and in others, inhibit it

    Mesenchymal Stem Cell - Derived Exosomes: New Opportunity i n Cell - Free Therapy

    No full text
    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell - to - cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC - deriv ed exosomes ( MSC - DEs ) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC - DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC - DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues , and the present paper aims to introduce MSC - DEs as a novel hope in cell - free therapy

    The Effects of Hypoxia on U937 Cell Line in Mesenchymal Stem Cells Co-Culture System

    No full text
    Purpose: Mesenchymal Stem Cells (MSCs) are the most important members of Bone Marrow (BM) milieu. MSCs affect different kinds of cells, particularly malignant cells of hematologic malignancies, but the effects of MSCs are unclear exactly. Here we analyzed the effects of derived Umbilical Cord Blood-MSCs on proliferation, cell death and some surface markers of U937 cell line in a Co-culture system with MSCs. Methods: Here we designed Co-culture systems as a model of BM milieu. We cultured U937 cells on UCB-MSCs and MSCs Conditioned Medium (C.M) driven and then treated U937 cells with optimum concentration of chloride cobalt (CoCl2) as a hypoxia-mimetic agent. In addition, we applied suitable concentrations of H2O2 to induce cell death. Proliferation rate, cell death rate and some surface markers of hypoxic U937 cells were analyzed by MTT assay, flow cytometry and Real Time-PCR were flown respectively. Results: UCB-MSCs showed supportive effects on U937 proliferation rate in normoxia and hypoxia. Lethal effect of H2O2 suppressed in the presence of UCB-MSCs in hypoxia and normoxia. Among CD11a, CD14, CD49d, CD54 and CD116 markers, CD49d was down regulated in presence of UCB-MSCs and CD116 was up regulated in hypoxia. Other markers didn’t show any significant changes. Conclusion: This work provides evidences that MSCs play critical roles in U937 cells biology. These observations shed new light on MSCs roles and demonstrated that MSCs should be regarded as an important member of BM milieu in several clinical applications such as BM transplantation prognosis and treatment of hematologic malignancies

    The Impact of Mesenchymal Stem Cells on Differentiation of Hematopoietic Stem Cells

    No full text
    Bone marrow microenvironment contains cellular and acellular compartments. The cellular compartment includes hematopoietic stem cells, mesenchymal stem cells and some other stromal cell types, while the acellular compartment is composed of scaffold proteins known as the extra cellular matrix. Direct cell-cell contact as well as cytokines secreted by mesenchymal stem cells during coculture of hematopoietic stem cells and mesenchymal stem cells play a critical role in hematopoiesis, and determines the fate of hematopoietic stem cells. Several studies have demonstrated the impact of mesenchymal stem cells on self-renewal, expansion, proliferation and differentiation of hematopoietic stem cells in vitro, which have shown different and contradictory results. In this paper, we will investigate the effect of mesenchymal stem cells on differentiation of hematopoietic stem cells in vitro

    PEGylated Human Serum Albumin: Review of PEGylation, Purification and Characterization Methods

    No full text
    Human serum albumin (HSA) is a non-glycosylated, negatively charged protein (Mw: about 65-kDa) that has one free cystein residue (Cys 34), and 17 disulfide bridges that these bridges have main role in its stability and longer biological life-time (15 to 19 days). As HSA is a multifunctional protein, it can also bind to other molecules and ions in addition to its role in maintaining colloidal osmotic pressure (COP) in various diseases. In critical illnesses changes in the level of albumin between the intravascular and extravascular compartments and the decrease in its serum concentration need to be compensated using exogenous albumin; but as the size of HSA is an important parameter in retention within the circulation, therefore increasing its molecular size and hydrodynamic radius of HSA by covalent attachment of poly ethylene glycol (PEG), that is known as PEGylation, provides HSA as a superior volume expander that not only can prevent the interstitial edema but also can reduce the infusion frequency. This review focuses on various PEGylation methods of HSA (solid phase and liquid phase), and compares various methods to purifiy and characterize the pegylated form
    corecore