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Introduction

Hematopoiesis is a procedure in which hematopoietic 

stem and progenitor cell (HSPCs) show continued 

cellular actions, including self-renewal, apoptosis, 

proliferation, and differentiation into multiple lineages, 

which creates different types of mature blood cells, as 

well as sufficient numbers of blood cells required for 

maintaining homeostasis.
1
 This process is the result of 

cooperation between HSPCs and MSCs.
2
 Different 

HSPC subpopulations express the CD34 marker, which 

are the most undifferentiated stem cell type, as well as 

multipotent progenitors (MPPs) downstream of the 

differentiation hierarchy with capacity of multilineage 

production.
3
 Self-renewal is essential for maintaining the 

HSPC reconstitution and is therefore a prerequisite for 

lifelong hematopoiesis.
4
 Most HSPCs are quiescent and 

in G0 phase of cell cycle,
5,6

 and daily hematopoiesis is 

largely maintained by highly proliferative downstream 

HSPCs.
7
 Cellular actions of HSPCs are controlled by 

both intrinsic cellular factors such as transcriptional 

regulatory networks, as well as extrinsic cellular factors 

like growth factors, cytokines, chemokines and 

microvesicles (MVs); for example, G-CSF, CXCL12, 

and transforming growth factor-β (TGF-β).
8
 During 

embryonic, fetal, and adult life, hematopoiesis depends 

on a microenvironment involving soluble components 

and cell-cell interactions. This microenvironment is 

known as the hematopoietic niche, which is mostly 

derived from a common progenitor of mesenchymal 

origin that adjusts the steady HSPC quiescence and 

activation(Figure 1).
9
 Stem cells (including HSPCs or 

MSCs) assure the lifelong regeneration of tissues.
10

 

Research has indicated that the cytokines and growth 

factors from MSCs exert their advantageous effects on 

target cells to boost tissue repair and regeneration, 

including immune response moderation, cell survival, 

anti-apoptosis, metabolism, proliferation, differentiation, 

hematopoiesis, angiogenesis, myogenesis, remodeling, 

wound healing, hair growth, neuroprotection, collateral 

development, and renal protection.
9,11-15

 The role of 

MSCs in support of hematopoiesis has been 

demonstrated by various studies. Dexter et al for the first 

time examined the establishment of in vitro culture 

conditions for long-term bone marrow culture (LTBMC) 

and showed that an adherent stromal-like culture could 

support the HSPCs.
16

 HSPCs are increasingly used for 

allogeneic and autologous transplantation but recovery of 

platelets occurs with a lower rate; therefore, several 

studies have shown that the proliferation of HSPCs in 

vitro could result in faster recovery after 

transplantation.
17,18

 MSCs release many growth factors 

that stimulate hematopoiesis, prepare a scaffold for 

hematopoiesis, protect primitive progenitor cells, expand 

and maintain HSPCs in LTBMC with CD34 
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Abstract 
Hematopoiesis is a balance among quiescence, self-renewal, proliferation, and 

differentiation, which is believed to be firmly adjusted through interactions between 

hematopoietic stem and progenitor cells (HSPCs) with the microenvironment. This 

microenvironment is derived from a common progenitor of mesenchymal origin and its 

signals should be capable of regulating the cellular memory of transcriptional situation and 

lead to an exchange of stem cell genes expression. Mesenchymal stem cells (MSCs) have 

self-renewal and differentiation capacity into tissues of mesodermal origin, and these cells 

can support hematopoiesis through release various molecules that play a crucial role in 

migration, homing, self-renewal, proliferation, and differentiation of HSPCs. Studies on the 

effects of MSCs on HSPC differentiation can develop modern solutions in the treatment of 

patients with hematologic disorders for more effective Bone Marrow (BM) transplantation 

in the near future. However, considerable challenges remain on realization of how paracrine 

mechanisms of MSCs act on the target tissues, and how to design a therapeutic regimen 

with various paracrine factors in order to achieve optimal results for tissue conservation and 

regeneration. The aim of this review is to characterize and consider the related aspects of 

the ability of MSCs secretome in protection of hematopoiesis. 
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hematopoietic progenitor cells (HPCs), supporting both 

erythroid and myeloid differentiation.
19

 

 

 
Figure 1. MSCs and their derivatives can regulate the action of 
HSPCs, such as self-renewal, differentiation, and quiescence 

 

Mesenchymal stem cells (MSCs) 

Friedenstein was the first scientist who identified MSCs 

in bone marrow. He described an undifferentiated 

heterogeneous subset of cells able to differentiate into 

mesenchymal lineages, such like osteocytes, adipocytes, 

and chondrocytes.
20,21

 MSCs can be isolated from 

various organs such as bone marrow, liver, adipose 

tissue, dental pulp, spleen, lung, umbilical cord blood,
22-

24
 normal peripheral blood,

25
 and during or following 

normal pregnancy, with or without fetal origin.
26,27

 

MSCs include 0.001%–0.01% of the nucleated cells in 

human bone marrow.
28

 The MSCs are largely believed to 

be derived from mesoderm; notably, the earliest lineage 

providing MSC-like cells during embryonic body 

formation is actually Sox1
+
 neuroepithelium rather than 

mesoderm, after which these early MSCs are replaced 

with MSCs from other sources in later processes.
29

 

MSCs have been isolated from fetal blood, liver, and BM 

in the first-trimester of pregnancy with morphologic, 

immunophenotypic, and functional characteristics 

resembling adult-derived MSCs.
23

 Co-expression of 

surface markers and adhesion molecules like CD105 

(SH2, transforming growth factor-b receptor III), CD73 

(SH3&SH4, NT5E), CD90 (thy-1), CD29, CD44, 

CD106, CD166
30

 but lack of expression of hematopoietic 

stem cell markers CD34, CD45, CD117 (cKit), HLA 

class I, HLA-DR (except for HLA-ABC) and lineage-

specific markers are important indicators of MSC 

immunophenotyping for detection of MSCs.
30-32

 MSCs 

have the ability of adhesion to plastic surfaces when 

cultured ex vivo with spindle-shaped and fibroblast-like 

morphology.
33

 MSCs can protect the reconstitution of 

erythroid, myeloid, lymphoid, and megakaryocytic 

lineages, which could improve hematopoietic 

engraftment.
34

 MSCs with immunosuppressive properties 

are useful in the treatment of graft versus host disease 

(GVHD)
35

 and can function through different ways from 

cell replacement to secretion of paracrine factors and 

cytokines. 

 

Hematopoiesis and Hematopoietic Stem and 

Progenitor Cells (HSPC)  
Hematopoiesis is initiated by rare somatic multipotent 

BM HSPCs and is a continuous process involving a 

hierarchy of differentiating progenitor cells, as well as 

production and consumption of mature blood cells that 

create the hemato-lymphoid system.
36

 HSPCs in the BM 

have two unique potentials: generating themselves (self-

renewal capacity) and all other blood cells (multi-lineage 

differentiation capacity), i.e. erythrocytes, 

megakaryocytes/platelets, B/T lymphocytes, 

monocytes/macrophages, neutrophils/granulocytes, 

eosinophils and basophils, such that HSPCs proliferation 

is associated with their proliferation. The self-renewal 

capacity is necessary for homeostasis because mature 

blood cells have a short lifetime.
4
 HSPCs can be 

retrieved from BM, umbilical cord blood (UCB), and 

peripheral blood (PB) by apheresis after mobilizing 

HSPCs from BM to PB under the effect of granulocyte-

colony stimulating factor (G-CSF). HPCs are uni-, bi-, or 

multi-potent, which have differentiation potential into 

various types of blood cells with limited self-renewal 

capacity.
37

 All functional HSPCs are associated with 

decreased and absence of expression of cell surface 

markers naturally detected on differentiating or mature 

blood cells while displaying Sca1 and c-kit markers. 

HSPCs can be identified with the absence of all lineage 

markers (Lin
−
) using a complex multi-flow cytometric 

labeling. CD34 is one of the most important markers, 

which is observed on early progenitor cells but not in 

mature cells, and CD38 is another surface marker that 

has been applied in association with CD34 to 

differentiate between HSPC, multipotent progenitors 

(CD38
−
), and committed progenitors (CD38

+
). Primitive 

HSPCs are CD34
+
,CD133

+
, CD38

-
, Lin

−
, Thy-1

+
(CD90), 

Sca1
+
, and c-kit

+
, while the coexpression of CD34

+
, 

CD38
−
, and CD90

− 
defines MPPs. The expression of 

CD10 on CD34
+
 cells defines the lymphoid-committed 

progenitors and the expression of IL-3αR
lo 

(CD123), 

CD45RA
−
 as well as CD34

+
 and CD38

+
 defines myeloid 

committed progenitors.
38,39

 

Based on their self-renewal capacity, HSPCs are divided 

into two categories: LT-HSC (long term-HSC) with high 

self-renewal ability and ST-HSC (short term-HSC) with 

limited self-renewal power that are derived from LT-

HSCs. ST- HSCs have the potential to differentiate to the 

common myeloid and lymphoid progenitors (CMP, CLP) 

and provide hematopoiesis for a short time.
21,40

 The 

promotion of cell differentiation is determined by 

increase in each of the CD13, CD38, CD45 and CD56 

markers. Proliferation and differentiation of these cells 

are regulated by cell interactions, soluble components, 

intrinsic and extrinsic signals in embryonic yolk sac, 

placenta, liver, and finally in BM,
41-43

 respectively. Cell 

interactions are regulated by various extracellular matrix 

(ECM) proteins such as secreted growth factors, 
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cytokines, adhesion molecules, MVs, transfer of genetic 

information, and miRNA.
44-46

 ECM proteins, as well as 

MSCs, have effects on the maintenance and 

differentiation into lineage-committed HSPCs.
47

 

 

Potential signaling pathways associated with 

hematopoiesis 

Signaling pathways and cellular interactions adjust the 

BM niche for HSPCs. MSCs produce numerous 

paracrine agents, and it may be difficult to investigate the 

mechanisms accountable for the production of distinctive 

factors.
48

 Some of these signaling pathways have been 

demonstrated to be associated with the expression and 

production of paracrine factors, involving a variety of 

signaling pathway receptors including Akt, signal 

transducer and activator of transcription (STAT), 

Tie2/Ang-1, p38 mitogen-activated protein kinase 

(MAPK), and tumor necrosis factor (TNF). The study of 

Gnecchi et al demonstrated that MSCs express and 

produce paracrine factors that play a role in homing and 

reduction of apoptosis, including VEGF, FGF-2, 

Angiopoetin-1 (Ang-1), and hepatocyte growth factor 

(HGF) from MSCs. These are potential mediators of the 

impact of Akt-MSC conditional medium and are 

considerably up-regulated in the Akt-MSCs in response 

to hypoxia, representing that Akt signaling is critical to 

the adjustment of the expression of these factors by 

MSCs.
49

 CCL5 (RANTES) and CXCL12 chemokines 

could activate STAT signaling pathways and are 

implicated in the survival and proliferation of HSPCs. 

CXCL12 selectively activates STAT-5 whereas CCL5 

activates STAT-1, and these two chemokines also 

activate MAPK signaling pathways.
50

 HGFs can be 

divided into two types: upstream and downstream HGFs. 

The former induce HSPCs proliferation (most are 

asymmetric divisions), while the latter induce the 

committed progenitor cells to differentiate.
51

 The 

secretion of HGF, VEGF, and IGF-I by MCSs is 

crucially increased by stimulation with TNF, which is 

involved in the enhanced activation of p38 MAPK. 

Inhibition of p38 MAPK signaling significantly 

decreases the production of HGF, VEGF, and IGF-I. 

However, p38 MAPK inhibitor by itself has no influence 

on the production of these factors without TNF 

stimulation. Research shows that TNF promotes the 

production of paracrine factors in MSCs through a p38 

MAPK-dependent mechanism.
52

 Also, the expression 

and production of CXCL-1, interleukin (IL)-6, and IL-8 

is reduced through deactivation of p38 MAPK signaling 

in MSCs.
53

 p38 MAPKs are involved in the regulation of 

hematopoiesis, erythropoiesis, and myelopoiesis. 

p38MAPKs respond to different extracellular stimuli, 

especially cellular stress, including hypoxia, UV 

radiation, growth factors, and inflammatory cytokines
54

 

and p38 activation can be induced by erythropoietin 

(EPO).
55

 

Tie2/Ang-1 signaling pathway has a critical role in the 

maintenance of HSPCs. The tight adhesive binding of 

MSCs to HSPCs by Ang-1 ligand and tyrosine kinase 

receptor (Tie2) allows for a specific population of 

HSPCs to keep quiescence even in presence of 

mobilizing factors such as G-CSF, the stimulation of 

which is involved in the maintenance of LT-HSCs 

repopulating.
56

 Similarly, the thrombopoietin (TPO) 

receptor (c-Mpl) is expressed by a quiescent population 

of LT-HSCs that are found to be associated with TPO 

produced by MSCs, and the stimulation of this pathway 

increases the number of quiescent HSPCs, while its 

blockage leads to a reduction in LT-HSC.
57

  

Through the production of Notch ligands via Wingless-

type (Wnt) pathway, MSCs play a role in HSPCs
58

 

survival and proliferation but inhibits their 

differentiation. In addition, through Jagged-1/Notch1,2 

pathway, MSCs support HSPC self-renewal, which 

blocks differentiation into MPP and myeloid and 

monocytic cell lineage. Notch-1 promotes T-cell 

differentiation versus B-cell differentiation.
59,60

 

Researchers have shown the expression of Notch-1 and 

Notch-2 by HSPCs, as well as Notch ligands Delta-1 

(Dll-1) and Jagged-1 (Jag1) by hMSC.
61

 Notch-1 plays 

an important role in the T- versus B-lineage selection of 

common lymphocyte precursors, but Notch-1 signaling 

has little role in the myeloid lineage differentiation.
62

 

Further studies demonstrated that Notch-1 signaling 

increases the generation of precursor cells and inhibits B-

cell and myeloid differentiation, inducing T-cells so that 

the distinctive activation of Notch target genes results 

from selective activation of various Notch receptors as a 

result of specific ligand interactions, leading to diverse 

cellular outcomes.
63,64

 In addition, cross-talk between 

pathways such as the Notch and Wnt may lead to 

synergistic effects. Furthermore, soluble or cell-

expressed Jagged-1 induced the expansion of HSPCs in 

vitro and mediated HSPC hematopoiesis and 

maintenance.
64,65

 Wnt/β-catenin signaling by MSC-MVs 

can improve the expansion of CD34
+
 cells

66
 through 

induced expression of the notch ligands (jagged-1, Dll-

1)
67,68

 or p15
INK4b

 mRNA. Wnt pathway is involved in 

HSPCs self-renewal, proliferation, repopulating activity 

or lineage specific differentiation. Wnt pathway is 

activated by binding two types of receptors: the Frizzled 

family and a subset of low-density lipoprotein receptor-

related protein (LRP) family (LRP-5 or 6). Since Wnt 

induces HSPC self-renewal in some organs, it enables 

the in vitro expansion of such cells and maintains their 

potency to reconstitute the entire cells after 

transplantation.
17,18

 Hedgehog signaling pathway 

modulates the transcription of target genes that affect the 

quiescence, self-renewal, proliferation, and 

differentiation of HSPCs. Three distinct ligands, i.e. 

Desert (Dhh), Indian (Ihh) and Sonic (Shh) Hedgehog 

exist in humans. 

 

MSCs derivatives 
The MSCs represent important components of the 

microenvironment. They produce a large diversity of 

cytokines and soluble forms of adhesion molecules, e.g. 

vascular cell adhesion molecule-1 (VCAM-1) and 
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intercellular adhesion molecule-1 (ICAM-1), which 

regulate hematopoiesis and are effective in homing 

similar to CXCL12.
69-71

 MSCs isolated from BM are 

functionally similar to umbilical cord blood derived 

MSCs
72

 and cytokine profile of BM and UCB MSCs is 

the same.
73

 A higher number of cytokines are released 

from placenta-MSC (P-MSCs) than umbilical cord-MSC 

(u-MSCs).
67

 The roles of some cytokines include 

maintaining HSPCs in quiescence, homing or induced 

self-renewal rather than differentiation. At the beginning 

of 1996, it was observed that MSCs isolated from human 

BM expressed and released G-CSF, stem cell factor 

(SCF), leukemia inhibitory factor (LIF), macrophage-

CSF (M-CSF), IL-6, and IL-11 within the in vitro culture 

medium with a role in the adjustment of the 

differentiation of cells isolated from BM stroma through 

receptors related to gp130 and associated with signal 

transduction pathways.
69

 Most types of MSCs had a 

common expression pattern, including GRO-α (growth 

related oncogene α, CXCL1), IL-8 (CXCL8), and IL-6 

that advance differentiation toward the myeloid lineage, 

as well as macrophage migration inhibitory factor (MIF, 

GIF, DER6) and Serpin E1 (PAI-1). Monocyte 

chemotactic protein-1 (MCP-1, CCL2) was expressed in 

both BM and amniotic MSCs, but the expression of 

stromal-derived factor-1 (SDF-1 or CXCL-12) involved 

in the homing and mediating the migration of HSPCs 

was higher in BM-MSCs.
74

 CCL2 acts as a strong 

chemotactic factor for monocytes, eosinophils, basophils, 

and a subset of T lymphocytes.
75

 Also, CXCL1, CXCL8, 

Serpin E1, and GM-CSF play a role in mobilization 

similar to G-CSF.
76

 A unique panel of chemokines, 

including CCR7, CCR9, CXCR4, CXCR5, and CXCR6 

are involved in homeostatic leukocyte trafficking and 

cell compartmentalization within BM and/or in 

secondary lymphoid organs.
77,78

 

The extracellular vesicles (EVs) derived from MSC are 

of three main types, including exosomes, microvescicles, 

and apoptotic bodies. They have different sizes (40–150 

nm) and production mechanisms, and their cells of origin 

are determined by surface markers.
79-81

 These particles 

have a vital role in intercellular communication.
82

 MVs 

are derived both through outward budding surfaces of 

activated cells or follow the endosomal membrane 

formation after fusion of secretory granules with the 

plasma membrane, so that later exosomes are formed 

within the endosome and make multi-vesicular bodies 

(MVB)
83-85

 of varying size and composition. They often 

contain a number of factors, which include functional 

transmembrane proteins, cytoplasmic protein, bioactive 

lipids, messenger RNAs )mRNAs(, tRNA, and 

microRNAs, mediating the transfer of these factors to 

target cells.
86

 Their RNA is nominated as “exosomal 

shuttle RNA” (esRNA). microRNAs (miRNA or 

miR) involve a class of small regulatory non-coding 

RNAs (19−23 nucleotides) that post-transcriptionally 

modulate gene expression, playing an important role in 

normal hematopoiesis by binding to their different target 

mRNAs.
87

 miRNAs have been implicated in all phases of 

hematopoiesis, including preservation of self-renewal 

and differentiation of HSPCs to mature blood cells, 

which might moderate cellular action by regulating 

transactivation, histone modification, DNA methylation, 

alternative splicing, and other miRNAs.
88,89

 

The therapeutic effects of paracrine mechanisms of 

MSCs are extremely complex, including numerous 

cytokines, growth factors, as well as related receptors 

and signaling molecules with a wide area of biological 

functions.
27

 It is necessary to identify the factors 

involved in the adjustment of expression and production 

of these paracrine molecules in MSCs to gain an optimal 

therapeutic result.
90

 Effects of MSCs derivatives on 

HSPCs and hematopoiesis are summarized in Table 1. 

 

Regulation of HSPCs by MSCs derivatives  

Signaling pathways associated with the maintenance and 

regulation of HSPCs obviously present useful knowledge 

on new findings in the treatment of various diseases and 

the developments in large scale preparation of HSPCs for 

transplantation.
39,53,56

 Also, the signaling pathways can 

provide understanding of the cancer stem cells to explore 

their possible use in treatments. All hematopoietic and 

immune cells are continuously generated by HSPCs 

through the intensely organized procedure of hierarchical 

lineage commitment.
4,39

 The MSCs represent important 

components with significant effects on different stages of 

hematopoiesis. Some of the cytokines released by MSCs 

are as follows: SCF, LIF, SDF-1, bone morphogenic 

protein (BMP)-4, Flt-3 ligand(FL), Kit-L, TNF-α, and 

TGF- β1.
69,83,84

 Some MSC cytokines can affect the 

maturation of HPCs, such as granulocyte-macrophage-

CSF (GM-CSF), G-CSF, and also IL-1, IL-3, IL-6, IL-7, 

IL-11, IL-12, IL-14, IL-15 and TPO, as well as FL to 

promote self-renewal, proliferation, and differentiation of 

HSPCs.
84,91-93

 SCF, TPO, and FL are the most potent 

cytokines for HSPCs expansion. In contrast, IL-3, IL-6, 

IL-11, and G-CSF have a capacity to produce 

differentiated cells.
57

 A unique mix of immobilized 

ligand Delta1, fibronectin fragments, and cytokines (i.e. 

TPO, SCF,Flt3 ligand, IL-3, IL-6) led to increase in the 

number of CD34
+
 cells after 17 days of culture.

94
 TPO is 

important for early megakaryocyte differentiation and is 

modulated through c-mpl receptor and IL-11, resulting in 

platelet formation.
95

 IL-6 and G-CSF are necessary for 

myeloid differentiation, and IL-6 in combination with 

SCF can induce considerable proliferation of HSPCs.
96,97

 

SCF/c-kit (CD117) in combination with FL/flt3 supports 

the preservation, proliferation, and differentiation toward 

myeloid and erythroid lineages of HSPC, as well as a 

number of other factors.
98-100

 BMP promotes blood 

production during in vitro differentiation. Kaimeng Hu et 

al showed that u-MSCs could be induced into 

hematopoietic cells and this differentiation is regulated 

through overexpression of miR-218 and miR-451 and 

affects the MITF-HoxB4 pathway.
101

 miR-451 is 

involved in specific differentiation of HSPC to erythroid 

lineage,
89

 as well as MV-mRNA that is involved in the 

hematopoietic differentiation along with Hexokinase 3 
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(HK3) and Eosinophil peroxidase (EPX).
102

 

CEBPA/miR-182, EGR2/miR-150 and miR-92, MPO/ 

hsa_piR_020814_ DQ598650 influence the down-

regulated genes and therefore play a crucial role in cell 

death and differentiation.
88

 CEBPA-alpha regulates the 

equivalence between expansion and differentiation 

within early hematopoietic and myeloid development, 

which is controlled by miR-182.
103-105

 The 

hsa_piR_020814_DQ598650 regulates myeloperoxidase 

(MPO) synthesis during myeloid differentiation.
106

 miR-

150
107

 and miR-9
108

 regulate another down-regulated 

gene, i.e. Early Growth Response 2 (EGR2), which is 

involved in apoptosis and differentiation.
109,110

 

MSCs also have a principal role in HSPC homing by 

secreting SDF-1,
111

 FL, SCF,
112

 VCAM-1, E-selectin, 

and collagen I,
113

 as well as expression of extracellular 

matrix proteins such as fibronectin, laminin, and 

vimentin in hematopoietic niche.
114-116

 The expression of 

SDF-1 chemokine is influenced by miR-886-3p that 

targets the 3´untranslated part of SDF-1 mRNA. SDF-1 

plays a crucial role in early B-cell lymphopoiesis and 

hematopoietic regulation.
117,118

 HSPCs stick to 

fibronectin through at least two integrin pairs: VLA-4 

(a4ß1) and VLA-5 (a5ß1). Fibronectin has either 

inhibitory or promotion effects on proliferation by 

inhibiting the G1/S promotion of HSPCs, which seems to 

be controversial.
119-121

 Laminin supports HSPCs 

proliferation and migration
122

 and chemokines conduct 

hematopoietic cell trafficking and localization in 

tissue.
123

 Several components can induce migration of 

HSPCs from BM to the peripheral blood. In the clinical 

setting, G-CSF is the most applicable inducer of HSPC 

mobilization,
124

 and miR-126 in EVs of stem cells is 

required for the adjustment of HSPC mobilization by 

down-regulation of VCAM-1 on HSPC surface, causing 

a reduced mobilization response to G-CSF.
125

 

In addition, chemokines released from MSCs such as 

CCL2, CCL5, CX3CL1 (fractalkine), CXCL8, CXCL12, 

and CXCL16 can stimulate chemotaxis.
126-128

 CXCL12 

/CXCR4 protects the preservation, homing, quiescence, 

survival, and HSPCs development;
129-131

 also, G-CSF, 

VEGF, and CXCL16 are associated with HSPC 

homing.
132

 CX3CL1 protects cell growth, differentiation, 

and migration.
126

 

BM-MSC-derived EV miRNAs can reduce apoptosis and 

differentiation of UCB-CD34
+
 cells.

88
 Overexpression of 

MV-miRs such as miR221, miR451, and miR654-3p 

induced cell development but the overexpression of 

miR210-5p, miR106b-3p, and miR155-5p inhibited 

radiation-induced apoptosis of HSPC.
133

 Luciana De 

Luca et al. demonstrated that BM-MSC-EVs can 

influence UCB-CD34
+
 gene expression model, resulting 

in the reduction of caspase dependent apoptosis via 

expression of miR-21-5p, miR-181a-5p, and miR92a-3p, 

inducing cell survival, inhibiting hematopoietic cell 

differentiation and boosting their movement to BM. 

Since these genes encode chemokines and cytokines (and 

their receptors) involved in the chemotaxis procedure of 

various BM cells, their potential role in the 

hematopoietic reconstitution is vital for engraftment.
88

 

miR-223 has a role in HSPC proliferation.
134

 A study 

showed that miR-223 was the highly expressed in 

platelets, peripheral blood mononuclear cells, and their 

plasma MVs.
135

 

BM-MSC-EVs miRNAs/piRNAs such as miR-21-5p, 

miR-181a-5p, and miR92a-3p notably reduce the 

apoptosis pathway and caspase 3/7 activity but miR-27b-

3p and miR-10a-5p can reduce CD38 expression or gene 

expression pattern of up-regulated genes (for example, 

IL6, CSF2, CCL3) under the regulation of miRNA 

targeted genes (for example, ZFP36/miR-27b-3p).
88

 

 

Immunosuppressive Effects of MSCs Derivatives  

MSCs have the immunosuppressive potential and can 

affect both natural and adaptive immunity by cell–cell 

contact or via secretion of soluble factors; however, the 

final effects depend on the type and condition of immune 

cells.
136

 Friedenstein showed that the transplantation of 

MSC/marrow stromal cells with HSPCs promotes the 

recovery of hematopoiesis and replicates the features of 

BM.
137

 Peng et al. revealed that MSCs significantly 

increased the production of CD5
+
 regulatory B-cells via 

generation of IL-10.
138

 MSCs can inhibit DCs 

differentiation
139

 through the secretion of IL-6 and M-

CSF and can eventually moderate immune responses via 

generation of growth factors and cytokines, including M-

CSF, IL-6, prostaglandin E2 (PGE2), TGF-β, HGF, 

cyclooxygenase (COX)-1, COX-2, indoleamine 2,3-

dioxygenase (IDO), nitric oxide (NO), and HLA-G5.
140-

142
 PGE2 is capable of enhancing self-renewal and 

proliferation of HSPCs through interaction with Wnt 

pathway by elevating the β-catenin expression 

levels.
143,144

 Also, PGE2 affects macrophages so that 

MSCs may improve organ function and be effective in 

treating sepsis.
145

 TNF, IL-10, IL-6, and PGE2 inhibit 

DC maturation, T-cell function, as well as activation and 

proliferation of both B and NK cells.
146

 Moreover, HLA-

G5 release by MSCs suppresses NK-cell and activity of 

T- and B-cells.
142

 IL-6 and the intercellular adhesion 

molecule 1 receptor inhibit T-cells, and have effects on 

B- cells.
147

 Increased IDO level is implicated in the 

differentiation of monocytes toward immune suppressive 

M2 macrophages, thus promoting the MSC 

immunosuppressive effect.
148

 In addition, MSC-EVs 

have the ability to suppress the maturation and activity of 

T- and B- cells, as well as differentiation of monocytes to 

M2-types, which is a result of functional development of 

CD4
+
,
 
CD25

+
, highFoxP3

+
 regulatory T-cells (Tregs) 

through different ways, including CCL-1 induction and 

soluble HLA-G5 release.
27,142,149,150

 MSCs can inhibit T-

cell proliferation, and activated T-cells are arrested in the 

G0 ⁄ G1 phase.
151,152

 MSCs express Toll-like receptors 

(TLRs) such as TLR3 and TLR4, which can inhibit the 

MSC immune-regulatory action by their ligands through 

Notch ⁄ Jagged1 signaling.
153
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Table 1. Effects of MSCs derivatives on HSPCs and Hematopoiesis 

MSCs derivatives Effects on HSPCs and Hematopoiesis References 

SCF 
TPO 
CXCL12 
flt3l 
PGE2 
miR221, miR451, miR654-3p 

HSPCs expansion and development 
57,133

 

IL-3, IL-6, IL-11 
G-CSF 

HSPCs differentiation 
57

 

TPO Early Megakaryocyte differentiation 
95

 

IL-11 Platelet formation 
95

 

IL-6 
G-CSF 

Myeloid differentiation 
96,97

 

IL-6 in combination with SCF 
Laminin 
miR-223 

HSPCs proliferation 
96,97,122,134

 

SCF/c-kit (CD117) Myeloid and Erythroid differentiation 
98,99

 

CXCL8, CXCL12, CXCL16 
CCL2, CCL5 
CX3CL1 (fractalkine) 
Flt-3 ligand(FL) 
SCF, G-CSF, VEGF 
VCAM-1, E-selectin 
Collagen I 
Fibronectin, Laminin, Vimentin 
miR-126 

HSPC homing and mobilization 
124-128

 

CXCL12 (SDF-1) 
Early B-cell lymphopoiesis 
Preservation, Quiescence 

117,118,129-131
 

VEGF 
FGF-2 
Angiopoetin-1 (Ang-1) 

Homing and reduction apoptosis 
132

 

IL-10 Increased CD5
+
 regulatory B cells generation 

138
 

IL-6 and M-CSF Inhibit DCs differentiation 
139

 

M-CSF, HGF 
IL-6, IL-10 
TNF 
PGE2 
TGF-β 
COX-1, COX-2 
IDO or NO 
HLA-G5 

Immunosuppressive and immunomodulation 
140,141,146

 

IDO M2 macrophage differentiation 
148

 

miR-451 Erythroid differentiation 
89

 

CEBPA/miR-182 
EGR2/miR-150 
miR-92, miR-9, miR-150 
MPO/ hsa_piR_020814_ DQ598650 

Apoptosis and differentiation 
88,107,108

 

hsa_piR_020814_DQ598650 Regulates MPO synthesis during myeloid differentiation 
106

 

miR210-5p 
miR106b-3p 
miR155-5p 

Inhibited radiation-induced apoptosis of HSPC 
133

 

miR-21-5p 
miR-181a-5p 
miR92a-3p 

Reduction of caspase dependent apoptosis 
88

 

 

Conclusion 

BM has received special consideration because it 

contains MSCs as well as HSPCs. Utilization of MSCs 

provides for the regeneration of damaged organs with 

cell-cell contact, soluble factors, and autocrine or 

paracrine effects promoting their function and preparing 

considerable therapeutic advantages in different 

diseases
14,32

 through cell-free products from hMSCs that 
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are effective on wound healing.
154

 In vitro expansion of 

HSPCs for transplantation is an intensive investigation 

field. The advantages of such investigations include 

accelerated engraftment, least stem cell harvests, reduced 

risk of infection, and enhanced effectiveness of 

genetically modified stem cells.
155

 The balance between 

self-renewal and proliferation of HSPCs will be helpful 

for the improvement of HSPC expansion and BM 

transplantation. MSCs and their derivatives have a 

critical role in homing, self-renewal, proliferation, and 

differentiation of HSPCs. Co-transplantation of MSCs 

and HSPCs promotes the engraftment of HSPCs and 

reduces the incidence of GVHD. This enhancement was 

higher after co-transplantation of HSPCs with GM-CSF 

and SCF-transfected MSCs, showing that these growth 

factors have effects on engraftment;
156,157

 therefore, these 

MSC cytokines and growth factors exert their 

advantageous effects on the target cells. Several studies 

have been conducted for demonstrating some of the 

effects of MSC on the expansion and differentiation of 

HSPC. Some studies on the expansion of HSPCs have 

been mentioned but further studies are required for the 

effects of MSCs on differentiation of HSPCs, especially 

the effects of MVs derived from MSCs, and the research 

for MSCs derivatives is an active subject of 

investigation. Novel and more sensitive devices and 

technology are required to discover, identify, and 

characterize recent MSCs derivatives that are found in 

low levels or have a labile nature. 
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