18 research outputs found

    Pediatric High Risk Leukemia — Molecular Insights

    Get PDF
    Acute leukemia comprises of 31% of all cancers in children making it the most common childhood malignancy. Significant strides have been made in treatment, partly through risk stratification and intensified therapy. A number of subtypes remain at high risk for relapse and poor outcome, despite current therapies. Here we describe risk stratification and molecular diagnosis used to identify high risk leukemias and guide treatment. Specific cytogenetic alterations that contribute to high risk B and T cell acute lymphoblastic leukemia (ALL), as well as infant leukemia are discussed. Particular attention is given to genetic alterations in IKZF1, CRLF2, and JAK, that have been identified by whole genome sequencing and recently associated with Ph-like ALL. Ongoing studies of disease mechanisms and challenges in developing pre-clinical patient-derived xenograft models to evaluate therapies are discussed

    The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia

    No full text
    Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) is a high-risk B-cell Acute Lymphoblastic Leukemia (B-ALL) characterized by a gene expression profile similar to Ph-positive B-ALL but lacking the BCR-ABL1 translocation. The molecular pathogenesis of Ph-like B-ALL is heterogenous and involves aberrant genomics, receptor overexpression, kinase fusions, and mutations leading to kinase signaling activation, leukemogenic cellular proliferation, and differentiation blockade. Testing for the Ph-like signature, once only a research technique, is now available to the clinical oncologist. The plethora of data pointing to poor outcomes for this ALL subset has triggered investigations into the role of targeted therapies, predominantly involving tyrosine kinase inhibitors that are showing promising results
    corecore