4 research outputs found

    RF Controlled Robotic Vehicle with Metal Detection Project

    Full text link
    The project is intended to cultivate a robotic vehicle that can sense metals ahead of it on its path similar to detecting land mines. The robot is controlled by a remote using RF technology. It consists of a metal detector circuit interfaced to the control unit that alarms the user behind it about a doubted land mine ahead. An 8051 series of microcontroller is used for the preferred operation. For controlling the movement of robot either to forward, backward & right or left commands are sent to the receiver by using push buttons of the transmitter. At the receiving end two motors are interfaced to the microcontroller where they are used for the movement of the vehicle. The RF transmitter acts as a RF remote control that has the advantage of sufficient range (up to 200 meters) with proper antenna, while the receiver decodes before serving it to another microcontroller to drive DC motors via motor driver IC for necessary work. A metal detector circuit is attached on the robot body and its operation is carried out automatically on sensing any metal underneath. The instant the robot senses this metal it produces an alarm sound through buzzer. This is to aware the operator of a probable metal (eg: land mine) ahead on its path. Further the project can be enhanced by mounting a wireless camera on the robot so that the operator can govern the movement of the robot remotely by observing it on a screen

    Gel Phase 1,2-Distearoyl- sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro

    No full text
    Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3Eα-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1β. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity

    A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection

    No full text
    This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4+ T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4+ T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza
    corecore