735 research outputs found
Explicit measurements with almost optimal thresholds for compressed sensing
We consider the deterministic construction of a measurement
matrix and a recovery method for signals that are block
sparse. A signal that has dimension N = nd, which consists
of n blocks of size d, is called (s, d)-block sparse if
only s blocks out of n are nonzero. We construct an explicit
linear mapping Φ that maps the (s, d)-block sparse signal
to a measurement vector of dimension M, where s•d <N(1-(1-M/N)^(d/(d+1))-o(1).
We show that if the (s, d)-
block sparse signal is chosen uniformly at random then the
signal can almost surely be reconstructed from the measurement
vector in O(N^3) computations
Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays
Microarrays (DNA, protein, etc.) are massively parallel affinity-based biosensors capable of detecting and quantifying a large number of different genomic particles simultaneously. Among them, DNA microarrays comprising tens of thousands of probe spots are currently being employed to test multitude of targets in a single experiment. In conventional microarrays, each spot contains a large number of copies of a single probe designed to capture a single target, and, hence, collects only a single data point. This is a wasteful use of the sensing resources in comparative DNA microarray experiments, where a test sample is measured relative to a reference sample. Typically, only a fraction of the total number of genes represented by the two samples is differentially expressed, and, thus, a vast number of probe spots may not provide any useful information. To this end, we propose an alternative design, the so-called compressed microarrays, wherein each spot contains copies of several different probes and the total number of spots is potentially much smaller than the number of targets being tested. Fewer spots directly translates to significantly lower costs due to cheaper array manufacturing, simpler image acquisition and processing, and smaller amount of genomic material needed for experiments. To recover signals from compressed microarray measurements, we leverage ideas from compressive sampling. For sparse measurement matrices, we propose an algorithm that has significantly lower computational complexity than the widely used linear-programming-based methods, and can also recover signals with less sparsity
Post-adjunct reading comprehension questions and meaning construction : a case of gender study
This article explicates on how the post-adjunct reading comprehension questions existing in the Iranian high school and pre-university English textbooks affect the comprehension of the related students. It further purports to see if there is a significant gender difference in the comprehension of reading texts by these student groups. To this end, 240 third-grade high school and pre-university students (equal number of male and female) participated in this investigation. The results demonstrated a significant superiority in the subjects’ reading comprehension when they answered the texts with the post-adjunct reading comprehension questions, designed by the researchers for this purpose. The results also showed non-significant gender disparities in the comprehension of given texts
Sparse measurements, compressed sampling, and DNA microarrays
DNA microarrays comprising tens of thousands of probe spots are currently being employed to test multitude of targets in a single experiment. Typically, each microarray spot contains a large number of copies of a single probe designed to capture a single target, and hence collects only a single data point. This is a wasteful use of the sensing resources in comparative DNA microarray experiments, where a test sample is measured relative to a reference sample. Since only a small fraction of the total number of genes represented by the two samples is differentially expressed, a vast number of probe spots will not provide any useful information. To this end we consider an alternative design, the so-called compressed microarrays, wherein each spot is a composite of several different probes and the total number of spots is potentially much smaller than the number of targets being tested. Fewer spots directly translates to significantly lower costs due to cheaper array manufacturing, simpler image acquisition and processing, and smaller amount of genomic material needed for experiments. To recover signals from compressed microarray measurements, we leverage ideas from compressive sampling. Moreover, we propose an algorithm which has far less computational complexity than the widely-used linear-programming-based methods, and can also recover signals with less sparsity
A Multi-zone Hvac System for a Typical Building for Matlab/simulink Platform
Matlab/Simulink is known in a large number of fields as a powerful and modern simulation tool. In the field of building and HVAC simulation its use is also increasing. However, it is still believed to be a tool for small applications due to its graphical structure and not to fit well for the simulation of multi-zone buildings. This paper presents the development of a new multi-zone building model for Matlab/Simulink platform
- …
