17 research outputs found

    Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells

    Get PDF
    Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions

    Role of HPV16 E1 in cervical carcinogenesis

    Get PDF
    Cervical cancer is the fourth most common cancer in women worldwide. More than 90% of cases are caused by the human papillomavirus (HPV). Vaccines developed only guard against a few HPV types and do not protect people who have already been infected. HPV is a small DNA virus that infects the basal layer of the stratified epithelium of the skin and mucosa through small breaks and replicates as the cells differentiate. The mucosal types of HPV can be classified into low-risk and high-risk groups, based on their association with cancer. Among HPV types in high-risk group, HPV type 16 (HPV-16) is the most common, causing 50% of all cancer cases. HPV infection can occur as transient or persistent infections, based on the ability of immune system to clear the virus. Persistent infection is characterized by the integration of HPV genome. HPV-16 exhibits a different integration pattern, with only 50% reported to be integrated at the carcinoma stage. Replication of the HPV genome depends on protein E1, an ATP-dependent helicase. E1 is essential for the amplification of the viral episome in infected cells. Previous studies have shown that E1 does not only act as a helicase protein but is also involved in recruiting and interacting with other host proteins. E1 has also been deemed to drive host cell proliferation. Recent studies have emphasized the emerging role of HPV E1 in cervical carcinogenesis. In this review, a possible mechanism by which E1 drives cell proliferation and oncogenesis will be discussed

    The Role of HPV16 E1 in Cervical Carcinogenesis

    Get PDF
    Cervical cancer is the fourth most common cancer in women worldwide. More than 90% of cases are caused by the human papillomavirus (HPV). Vaccines developed only guard against a few HPV types and do not protect people who have already been infected. HPV is a small DNA virus that infects the basal layer of the stratified epithelium of the skin and mucosa through small breaks and replicates as the cells differentiate. The mucosal types of HPV can be classified into low-risk and high-risk groups, based on their association with cancer. Among HPV types in high-risk group, HPV type 16 (HPV-16) is the most common, causing 50% of all cancer cases. HPV infection can occur as transient or persistent infections, based on the ability of immune system to clear the virus. Persistent infection is characterized by the integration of HPV genome. HPV-16 exhibits a different integration pattern, with only 50% reported to be integrated at the carcinoma stage. Replication of the HPV genome depends on protein E1, an ATP-dependent helicase. E1 is essential for the amplification of the viral episome in infected cells. Previous studies have shown that E1 does not only act as a helicase protein but is also involved in recruiting and interacting with other host proteins. E1 has also been deemed to drive host cell proliferation. Recent studies have emphasized the emerging role of HPV E1 in cervical carcinogenesis. In this review, a possible mechanism by which E1 drives cell proliferation and oncogenesis will be discussed

    Molecular epidemiology of gibbon hepatitis B virus transmision

    Get PDF
    Although transmission of human hepatitis B virus (HBV) variants to nonhuman primates is well documented, it remains to be elucidated whether nonhuman primate HBV is transmissible to humans. The prevalence and transmission routes of gibbon HBV were analysed in 101 captive gibbons in Thailand. Approximately 40% of these animals showed at least one marker of HBV infection; 19 animals were chronic HBV carriers, characterized by elevated levels of alanine amino transferase and the presence of HBV DNA. Some of the chronic animals were found to be anti-HBc (HBV core antigen) negative (4 of 19), while precore promoter point mutations (nt 1762 or 1764) were determined in four animals by RFLP analysis. Phylogenetic tree analysis of the complete surface gene sequences revealed that gibbon viruses clustered separately from hepadnaviruses of other hosts. Evidence for horizontal and vertical transmission in captive gibbons was obtained. HBV DNA was also detected in the saliva of HBV carrier gibbons. Although some of the animal caretakers at the Krabok Koo Wildlife Breeding Centre were found to be chronic HBV carriers, genotype and sequence analysis did not reveal any evidence for zoonotic disease transmission.</p

    Molecular Mechanisms of Curcumin on Diabetes-Induced Endothelial Dysfunctions: Txnip, ICAM-1, and NOX2 Expressions

    No full text
    We aim to investigate the effects of curcumin on preventing diabetes-induced vascular inflammation in association with its actions on Txnip, ICAM-1, and NOX2 enzyme expressions. Male Wistar rats were divided into four groups: control (CON), diabetic (DM; streptozotocin (STZ), i.v. 55 mg/kg BW), control-treated with curcumin (CONCUR; 300 mg/kg BW), and diabetes treated with curcumin (DMCUR; 300 mg/kg BW). 12th week after STZ injection, iris blood perfusion, leukocyte adhesion, Txnip, p47phox, and malondialdehyde (MDA) levels were determined by using laser Doppler, intravital fluorescent confocal microscopy, Western Blot analysis, and TBAR assay, respectively. The iris blood perfusion of DM and DMCUR was decreased significantly compared to CON and CONCUR (P<0.001). Plasma glucose and HbA1c of DM and DMCUR were increased significantly compared to CON and CONCUR (P<0.001). Leukocyte adhesion, ICAM-1, p47phox expression, and MDA levels in DM were increased significantly compared to CON, CONCUR, and DMCUR (P<0.05). Txnip expression in DM and DMCUR was significantly higher than CON and CONCUR (P<0.05). From Pearson’s analysis, the correlation between the plasma MDA level and the endothelial functions was significant. It suggested that curcumin could ameliorate diabetic vascular inflammation by decreasing ROS overproduction, reducing leukocyte-endothelium interaction, and inhibiting ICAM-1 and NOX2 expression

    Antitumor and Antiangiogenic Activities of Curcumin in Cervical Cancer Xenografts in Nude Mice

    No full text
    To evaluate the effects of curcumin (CUR) on tumor progression and angiogenesis in cervical cancer- (CaSki-) implanted nude mice and on the angiogenic biomarkers: vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), and epidermal growth factor receptor (EGFR). CaSki cells were subcutaneously injected in nude mice to establish subcutaneous tumors. One month after injection, mice were orally administered vehicle or 500, 1,000, and 1,500 mg/kg of CUR daily × 30 consecutive days. Tumor volume was measured every 3-4 days. At the end of the study, tumor microvasculature was observed under confocal microscope, and immunohistochemical analyses were performed to detect CD31, VEGF, COX-2, and EGFR. CUR at the doses of 1,000 and 1,500 mg/kg showed significant tumor growth retardation (21.03% and 35.57%) versus CaSki + vehicle group. The microvascular density (MVD) in CaSki + vehicle group was significantly increased versus Control + vehicle group and significantly reduced by CUR (1,000 and 1,500 mg/kg). VEGF, COX-2, and EGFR expressions were upregulated in CaSki + vehicle group and attenuated significantly by CUR (1,000 and 1,500 mg/kg). In conclusion, high dose CUR inhibited tumor growth and angiogenesis in CaSki-implanted mice probably mediated by the downregulation of VEGF, COX-2 and EGFR. CUR may have a role in treating human cervical cancer and should be explored further

    Effects of Tetrahydrocurcumin on Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in Cervical Cancer Cell-Induced Angiogenesis in Nude Mice

    No full text
    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future

    HPV16 E1 dysregulated cellular genes involved in cell proliferation and host DNA damage: A possible role in cervical carcinogenesis

    No full text
    HPV16 is the most prominent cause of cervical cancer. HPV16 E1, a helicase required for HPV replication exhibits increased expression in association with cervical cancer progression, suggesting that E1 has a similar effect on the host as the HPV16 E6 and E7 oncoproteins. This study aimed to determine whether expression of HPV16 E1 correlated with carcinogenesis by modulating cellular pathways involved in cervical cancer. HEK293T cells were transfected with pEGFP, pEGFPE1 or truncated forms of HPV16 E1. Cell proliferation, cell death, and the impact of HPV16 E1 on host gene expression was then evaluated. HPV16 E1 overexpression resulted in a significant reduction of cell viability and cellular proliferation (p-value<0.0001). Moreover, prolonged expression of HPV16 E1 significantly induced both apoptotic and necrotic cell death, which was partially inhibited by QVD-OPH, a broad-spectrum caspase inhibitor. Microarray, real time RT-PCR and kinetic host gene expression analyses revealed that HPV16 E1 overexpression resulted in the downregulation of genes involved in protein synthesis (RPL36A), metabolism (ALDOC), cellular proliferation (CREB5, HIF1A, JMJDIC, FOXO3, NFKB1, PIK3CA, TSC22D3), DNA damage (ATR, BRCA1 and CHEK1) and immune response (ISG20) pathways. How these genetic changes contribute to HPV16 E1-mediated cervical carcinogenesis warrants further studies

    HIV-1 Replication in HIV-Infected Individuals Is Significantly Reduced When Peripheral Blood Mononuclear Cells Are Superinfected with HSV-1

    Get PDF
    Herpes simplex virus (HSV) can cause generalized infection in human immunodeficiency virus- (HIV-) infected patients leading to death. This study investigated HSV-1 replication in PBMCs from 25 HIV-infected individuals and 15 healthy donors and the effects of HSV-1 superinfection on HIV-1 production. Herpes viral entry mediator (HVEM) receptor on T lymphocytes was also evaluated. Our results confirmed that the number of activated (CD3+ and CD38+) T lymphocytes in HIV-infected individuals (46.51±17.54%) was significantly higher than in healthy donors (27.54±14.12%, P value = 0.001) without any significant differences in HVEM expression. Even though the percentages of HSV-1 infected T lymphocytes between HIV-infected individuals (79.25±14.63%) and healthy donors (80.76±7.13%) were not different (P value = 0.922), yet HSV-1 production in HIV-infected individuals (47.34±11.14×103 PFU/ml) was significantly greater than that of healthy donors (34.17±8.48×103 PFU/ml, P value = 0.001). Moreover, HSV-1 virions were released extracellularly rather than being associated with the cells, and superinfection of HSV-1 at a multiplicity of infection (MOI) of 5 significantly decreased HIV production (P value < 0.001)
    corecore