25 research outputs found

    Quantum dots in axillary lymph node mapping: Biodistribution study in healthy mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is the first cause of cancer death among women and its incidence doubled in the last two decades. Several approaches for the treatment of these cancers have been developed. The axillary lymph node dissection (ALND) leads to numerous morbidity complications and is now advantageously replaced by the dissection and the biopsy of the sentinel lymph node. Although this approach has strong advantages, it has its own limitations which are manipulation of radioactive products and possible anaphylactic reactions to the dye. As recently proposed, these limitations could in principle be by-passed if semiconductor nanoparticles (quantum dots or QDs) were used as fluorescent contrast agents for the <it>in vivo </it>imaging of SLN. QDs are fluorescent nanoparticles with unique optical properties like strong resistance to photobleaching, size dependent emission wavelength, large molar extinction coefficient, and good quantum yield.</p> <p>Methods</p> <p>CdSe/ZnS core/shell QDs emitting around 655 nm were used in our studies. 20 μL of 1 μM (20 pmol) QDs solution were injected subcutaneously in the anterior paw of healthy nude mice and the axillary lymph node (ALN) was identified visually after injection of a blue dye. <it>In vivo </it>fluorescence spectroscopy was performed on ALN before the mice were sacrificed at 5, 15, 30, 60 min and 24 h after QDs injection. ALN and all other organs were removed, cryosectioned and observed in fluorescence microscopy. The organs were then chemically made soluble to extract QDs. Plasmatic, urinary and fecal fluorescence levels were measured.</p> <p>Results</p> <p>QDs were detected in ALN as soon as 5 min and up to 24 h after the injection. The maximum amount of QDs in the ALN was detected 60 min after the injection and corresponds to 2.42% of the injected dose. Most of the injected QDs remained at the injection site. No QDs were detected in other tissues, plasma, urine and feces.</p> <p>Conclusion</p> <p>Effective and rapid (few minutes) detection of sentinel lymph node using fluorescent imaging of quantum dots was demonstrated. This work was done using very low doses of injected QDs and the detection was done using a minimally invasive method.</p

    Dynamic Imaging of CD8+ T Cells and Dendritic Cells during Infection with Toxoplasma gondii

    Get PDF
    To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis

    SENTINEL LYMPH NODE MAPPING OF THE PLEURAL SPACE

    No full text
    Study objectives: Although the sentinel lymph node (SLN) concept has traditionally been applied to solid organs, we hypothesized that the pleural space might drain into a specific SLN group. The identification of such a nodal group could assist in the staging and treatment of pleural-based diseases, such as mesothelioma, or other lung cancers with,visceral pleural invasion. The purpose of this study was to determine whether the pleural space has an SLN group. Design; Sixteen rats underwent right or left pleural space injection of a novel lymph tracer, quantum dots (QDs), which have a hydrodynamic diameter of 15 nm and fluoresce in the near-infrared (NIR) spectrum. Nodal uptake of the entire thorax was imaged with a custom system that simultaneously acquired color video, NIR fluorescence of the QDs, and a merged picture of the two in real-time. Six pigs underwent right or left pleural space injection of QDs and similar imaging. Measurements and results: In the rat, the QDs drained solely to the highest superior mediastinal lymph node group, corresponding to lymph node station 1, according the regional lymph node classification for lung of the American joint Committee on Cancer. In one rat, the injection of QDs in the left pleural space resulted in migration to the contralateral station 1 lymph node group. The injection of QDs in the tight or left pleural space of the pig resulted in migration solely to the ipsilateral highest superior mediastinal lymph node group. Conclusions: NIR fluorescence imaging in two species demonstrated that the highest superior mediastinal lymph nodes of station 1 are the SLNs of the pleural space. This study also provides intraoperative feasibility and proof of the concept for identifying lymph nodes communicating,with the pleural space on a patient-specific basis, in real-time, and with high sensitivity.X1193sciescopu

    In Vivo Sentinel Lymph Node Mapping in Lung Cancer

    No full text

    SENTINEL LYMPH NODE MAPPING OF THE GASTROINTESTINAL TRACT BY USING INVISIBLE LIGHT

    No full text
    Because many gastrointestinal (GI) tumors spread by way of lymphatics, histological assessment of the first draining lymph nodes has both prognostic and therapeutic significance. However, sentinel lymph node mapping of the GI tract by using available techniques is limited by unpredictable drainage patterns, high background signal, and the inability to image lymphatic tracers relative to surgical anatomy in real time. Our goal was to develop a method for patient-specific intraoperative sentinel lymph node mapping of the GI tract by using invisible near-infrared light. We developed an intraoperative near-infrared fluorescence imaging system that simultaneously displays surgical anatomy and otherwise invisible near-infrared fluorescence images of the surgical field. Near-infrared fluorescent quantum dots were injected intraparenchymally into the stomach, small bowel, and colon, and draining lymphatic channels and sentinel lymph nodes were visualized. Dissection was performed under real-time image guidance. In 10 adult pigs, we demonstrated that 200 pmol of quantum dots quickly and accurately map lymphatic drainage and sentinel lymph nodes. Injection into the mid jejunum and colon results in fluorescence of a single lymph node at the root of the bowel mesentery. Injection into the stomach resulted in identification of a retrogastric node. Histological analysis in all cases confirmed the presence of nodal tissue. We report the use of invisible near-infrared light for intraoperative sentinel lymph node mapping of the GI tract. This technology overcomes the limitations of currently available methods, permits patient-specific imaging of lymphatic flow and sentinel nodes, and provides highly sensitive, real-time image-guided dissection.X1196sciescopu

    INTRAOPERATIVE IDENTIFICATION OF ESOPHAGEAL SENTINEL LYMPH NODES WITH NEAR-INFRARED FLUORESCENCE IMAGING

    No full text
    Objective: In esophageal cancer, selective removal of involved lymph nodes could improve survival and limit complications from extended lymphadenectomy. Mapping with vital blue dyes or technetium Tc-99m often fails to identify intrathoracic sentinel lymph nodes. Our purpose was to develop an intraoperative method for identifying sentinel lymph nodes of the esophagus with high-sensitivity near-infrared fluorescence imaging. Methods: Six Yorkshire pigs underwent thoracotomy and received submucosal, esophageal injection of quantum dots, a novel near-infrared fluorescent lymph tracer designed for retention in sentinel lymph nodes. Six additional pigs underwent thoracotomy and received submucosal esophageal injection of CW800 conjugated to human serum albumin, another novel lymph tracer designed for uptake into distant lymph nodes. Finally, 6 pigs received submucosal injection of the fluorophore-conjugated albumin with an endoscopic needle through an esophagascope. These lymph tracers fluoresce in the near-infrared, permitting visualization of migration to sentinel lymph nodes with a custom intraoperative imaging system. Results: Injection of the near-infrared fluorescent lymph tracers into the esophagus revealed communicating lymph nodes within 5 minutes of injection. In all 6 pigs that received quantum dot injection, only a single sentinel lymph node was identified. Among pigs that received fluorophore-conjugated albumin injection, in 5 of 12 a single sentinel lymph node was revealed, but in 7 of 12 two sentinel lymph nodes were identified. There was no dominant pattern in the appearance of the sentinel lymph nodes either cranial or caudal to the injection site. Conclusion: Near-infrared fluorescence imaging of sentinel lymph nodes is a novel and reliable intraoperative technique with the power to assist with identification and resection of esophageal sentinel lymph nodes.X11135sciescopu
    corecore