150 research outputs found
Skeletal Collagen Turnover by the Osteoblast
Among the most overt negative changes experienced by man and experimental animals under conditions of weightlessness are the loss of skeletal mass and attendant hypercalciuria. These clearly result from some disruption in the balance between bone formation and bone resorption (i.e. remodelling) which appears to be due to a decrease in the functions of the osteoblast. In the studies funded by this project, the clonal osteoblastic cell line, UMR 106-01, has been used to investigate the regulation of collagenase and Tissue Inhibitors of MetalloProteases (TIMPs). This project has shed light on the comprehensive role of the osteoblast in the remodelling process, and, in so doing, provided some insight into how the process might be disrupted under conditions of microgravity
Bone culture research
The experiments described are aimed at exploring PTH regulation of production of collagenase and protein inhibitors of collagenase (tissue inhibitors of metalloproteases, TIMP-1 and -2) by osteoblast-like osteosarcoma cells under conditions of weightlessness. The results of this work will contribute to information as to whether a microgravity environment alters the functions and responsiveness of the osteoblast. The objectives of the Bone Culture Research (BCR) experiment are: to observe the effects of microgravity on the morphology, rate of proliferation, and behavior of the osteoblastic cells, UMR 106-01; to determine whether microgravy affects the hormonal sensitivity of osteroblastic cells; and to measure the secretion of collagenase and its inhibitors into the medium under conditions of microgravity. The methods employed will consist of the following: the osteoblast-like cells, UMR-106-01, will be cultured in four NASDA cell culture chambers; two chambers will be subjected to microgravity on SL-J; two chambers will remain on the ground at KSC as ground controls but subjected to an identical set of culture conditions as on the shuttle; media will be changed four times; twice the cells will receive the hormone parathyroid hormone-related protein (PTHrP) and media collected; cells will be photographed under conditions of microgravity; and media and photographs will be analyzed upon return to determine whether functions of the cells changed
Epidermal Growth Factor Receptor Plays an Anabolic Role in Bone Metabolism In Vivo
While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col-Cre Egfrf/f), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant-negative allele, Wa5, and generated Col-Cre EgfrWa5/f mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony-forming unit–fibroblast (CFU-F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild-type mice caused a significant reduction in trabecular bone volume. In contrast, EgfrDsk5/+ mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research
A framework for deriving semantic web services
Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been
predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but
lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the
migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the
framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario
Amphiregulin Is a Novel Growth Factor Involved in Normal Bone Development and in the Cellular Response to Parathyroid Hormone Stimulation
Parathyroid hormone (PTH) is the major mediator of calcium homeostasis and bone remodeling and is now known to be an effective drug for osteoporosis treatment. Yet the mechanisms responsible for its functions in bone are largely unknown. Here we report that the expression of amphiregulin (AR), a member of the epidermal growth factor (EGF) family, is rapidly and highly up-regulated by PTH in several osteoblastic cell lines and bone tissues. Other osteotropic hormones (1{alpha},25-dihydroxyvitamin D3 and prostaglandin E2) also strongly stimulate AR expression. We found all EGF-like ligands and their receptors are expressed in osteoblasts, but AR is the only member that is highly regulated by PTH. Functional studies demonstrated that although AR is a potent growth factor for preosteoblasts, it completely inhibits further differentiation. AR also strongly and quickly stimulated Akt and ERK phosphorylation and c-fos and c-jun expression in an EGF receptor-dependent manner. Moreover, AR null mice displayed significantly less tibial trabecular bone than wild-type mice. Taken together, we have identified a novel growth factor that is PTH-regulated and appears to have an important role in bone metabolism
Search for Production via Trilepton Final States in collisions at TeV
We have searched for associated production of the lightest chargino,
, and next-to-lightest neutralino, , of the
Minimal Supersymmetric Standard Model in collisions at
\mbox{ = 1.8 TeV} using the \D0 detector at the Fermilab Tevatron
collider. Data corresponding to an integrated luminosity of 12.5 \ipb
were examined for events containing three isolated leptons. No evidence for
pair production was found. Limits on
BrBr are
presented.Comment: 17 pages (13 + 1 page table + 3 pages figures). 3 PostScript figures
will follow in a UUEncoded, gzip'd, tar file. Text in LaTex format. Submitted
to Physical Review Letters. Replace comments - Had to resumbmit version with
EPSF directive
Measurement of the Boson Mass
A measurement of the mass of the boson is presented based on a sample of
5982 decays observed in collisions at
= 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a
fit to the transverse mass spectrum, combined with measurements of the
boson mass, the boson mass is measured to be .Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures
(submitted to PRL
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
Search for a Fourth Generation Charge -1/3 Quark via Flavor Changing Neutral Current Decay
We report on a search for pair production of a fourth generation charge -1/3
quark (b') in pbar p collisions at sqrt(s) = 1.8 TeV at the Fermilab Tevatron
using an integrated luminosity of 93 pb^-1. Both quarks are assumed to decay
via flavor changing neutral currents (FCNC). The search uses the signatures
gamma + 3 jets + mu-tag and 2 gamma + 2 jets. We see no significant excess of
events over the expected background. We place an upper limit on the production
cross section times branching fraction that is well below theoretical
expectations for a b' quark decaying exclusively via FCNC for b' quark masses
up to m(Z) + m(b).Comment: Eleven pages, two postscript figures, submitted to Physical Review
Letter
Measurement of the Top Quark Mass Using Dilepton Events
The D0 collaboration has performed a measurement of the top quark mass based
on six candidate events for the process t tbar -> b W+ bbar W-, where the W
bosons decay to e nu or mu nu. This sample was collected during an exposure of
the D0 detector to an integrated luminosity of 125 pb^-1 of sqrt(s)=1.8 TeV
p-pbar collisions. We obtain mt = 168.4 +- 12.3 (stat) +- 3.7 (sys) GeV/c^2,
consistent with the measurement obtained using single-lepton events.
Combination of the single-lepton and dilepton results yields mt = 172.0 +- 7.5
GeV/c^2.Comment: 12 pages, 3 figure
- …