707 research outputs found
Nonlinear limits to the information capacity of optical fiber communications
The exponential growth in the rate at which information can be communicated
through an optical fiber is a key element in the so called information
revolution. However, like all exponential growth laws, there are physical
limits to be considered. The nonlinear nature of the propagation of light in
optical fiber has made these limits difficult to elucidate. Here we obtain
basic insights into the limits to the information capacity of an optical fiber
arising from these nonlinearities. The key simplification lies in relating the
nonlinear channel to a linear channel with multiplicative noise, for which we
are able to obtain analytical results. In fundamental distinction to the linear
additive noise case, the capacity does not grow indefinitely with increasing
signal power, but has a maximal value. The ideas presented here have broader
implications for other nonlinear information channels, such as those involved
in sensory transduction in neurobiology. These have been often examined using
additive noise linear channel models, and as we show here, nonlinearities can
change the picture qualitatively.Comment: 1 figure, 7 pages, submitted to Natur
Coherence in Large-Scale Networks: Dimension-Dependent Limitations of Local Feedback
We consider distributed consensus and vehicular formation control problems.
Specifically we address the question of whether local feedback is sufficient to
maintain coherence in large-scale networks subject to stochastic disturbances.
We define macroscopic performance measures which are global quantities that
capture the notion of coherence; a notion of global order that quantifies how
closely the formation resembles a solid object. We consider how these measures
scale asymptotically with network size in the topologies of regular lattices in
1, 2 and higher dimensions, with vehicular platoons corresponding to the 1
dimensional case. A common phenomenon appears where a higher spatial dimension
implies a more favorable scaling of coherence measures, with a dimensions of 3
being necessary to achieve coherence in consensus and vehicular formations
under certain conditions. In particular, we show that it is impossible to have
large coherent one dimensional vehicular platoons with only local feedback. We
analyze these effects in terms of the underlying energetic modes of motion,
showing that they take the form of large temporal and spatial scales resulting
in an accordion-like motion of formations. A conclusion can be drawn that in
low spatial dimensions, local feedback is unable to regulate large-scale
disturbances, but it can in higher spatial dimensions. This phenomenon is
distinct from, and unrelated to string instability issues which are commonly
encountered in control problems for automated highways.Comment: To appear in IEEE Trans. Automat. Control; 15 pages, 2 figure
Drug discovery in tuberculosis: a molecular approach
Despite unquestionable success of the combination drug therapy, tuberculosis (TB) very recently has drawn major attention because of the global upsurge of MDR-TB, XDR -TB and HIV-TB co-infection cases. In the last four decades, only one compound is added to the treatment regimen leaving ample opportunities to find out a new generation of TB drugs. The modern concept of drug discovery utilizes the integrated knowledge of genomics, proteomics, molecular biology and systems biology to identify more specific targets. The purpose of this review is to revisit the field of tuberculosis drug discovery based on those new concepts to identify novel targets
- …
