6 research outputs found

    Negative capacitance and instability at electrified interfaces: Lessons from the study of membrane capacitors

    No full text
    Various models leading to predictions of negative capacitance, C, are briefly reviewed. Their relation to the nature of electric control is discussed. We reconfirm that the calculated double layer capacitance can be negative under σ-control – an artificial construct that requires uniform distribution of the electrode surface charge density, σ. However, only the total charge q (or the average surface charge density σ) can be experimentally fixed in isolated cell studies (q-control). For those σ where C becomes negative under σ-control, the transition to q-control (i.e. relaxing the lateral change density distribution, fixing its mean value to σ) leads to instability of the uniform distribution and a transition to a non-uniform phase. As an illustration, a “membrane capacitor” model is discussed. This exactly solvable model, allowing for both uniform and inhomogeneous relaxation of the electrical double layer, helps to demonstrate both the onset and some important features of the instability. Possibilities for further development are discussed briefly.Представлено короткий огляд моделей, які передбачають негативну ємність C. Обговорюється роль цих моделей у явищі електричного контролю. Ми ще раз показуємо, що розрахункова ємність подвійного шару може бути негативною завдяки σ-контролю – штучній конструкції, яка вимагає однорідного розподілу густини поверхневого заряду електрода, σ. Разом з тим, тільки загальний заряд q (або усереднена густина поверхневого заряду σ) може бути експериментально зафіксованою при дослідженні ізольованої комірки (q-контроль), Для значень σ, де C стає від’ємною в умовах σ-контролю, перехід до q-контролю (тобто релаксація латеральної густини розподілу заряду шляхом фіксації її середнього значення до величини σ) веде до нестабільності однорідного розподілу і переходу до неоднорідної фази. В якості ілюстрації розглядається модель “мембранного конденсатора”. Ця точно розв’язувана модель допускає як однорідну, так і неоднорідну релаксацію і таким чином допомагає продемонструвати зародження і деякі важливі риси нестабільності. Коротко обговорюються можливості подальших досліджень

    Extended dipolar chain model for ion channels: electrostriction effects and the translocational energy barrier

    Get PDF
    We reinvestigate the dipolar chain model for an ion channel. Our goal is to account for the influence that ion-induced electrostriction of channel water has on the translocational energy barriers experienced by different ions in the channel. For this purpose, we refine our former model by relaxing the positional constraint on the ion and the water dipoles and by including Lennard-Jones contributions in addition to the electrostatic interactions. The positions of the ion and the waters are established by minimization of the free energy. As before, interaction with the external medium is described via the image forces. Application to alkali cations show that the short range interactions modulate the free energy profiles leading to a selectivity sequence for translocation. We study the influence of some structural parameters on this sequence and compare our theoretical predictions with observed results for gramicidin
    corecore