186 research outputs found
Microsized subsurface modification of mono-crystalline silicon via non-linear absorption
We introduce a novel method of optically inducing microsized subsurface structures using non-linear absorption of near infrared light in mono-crystalline silicon. We discuss the physical processes such as multi-photon absorption and self focussing in the material. The results presented in this paper demonstrate a new method of subsurface modifications in silicon and may open up novel avenues for optical devices embedded in silicon and optical process for the separation of wafers from their ingots
Radiation from the LTB black hole
Does a dynamical black hole embedded in a cosmological FRW background emit
Hawking radiation where a globally defined event horizon does not exist? What
are the differences to the Schwarzschild black hole? What about the first law
of black hole mechanics? We face these questions using the LTB cosmological
black hole model recently published. Using the Hamilton-Jacobi and radial null
geodesic-methods suitable for dynamical cases, we show that it is the apparent
horizon which contributes to the Hawking radiation and not the event horizon.
The Hawking temperature is calculated using the two different methods giving
the same result. The first law of LTB black hole dynamics and the thermal
character of the radiation is also dealt with.Comment: 9 pages, revised version, Europhysics Letter 2012 97 2900
Generalized Boltzmann Equation for Lattice Gas Automata
In this paper, for the first time a theory is formulated that predicts
velocity and spatial correlations between occupation numbers that occur in
lattice gas automata violating semi-detailed balance. Starting from a coupled
BBGKY hierarchy for the -particle distribution functions, cluster expansion
techniques are used to derive approximate kinetic equations. In zeroth
approximation the standard nonlinear Boltzmann equation is obtained; the next
approximation yields the ring kinetic equation, similar to that for hard sphere
systems, describing the time evolution of pair correlations. As a quantitative
test we calculate equal time correlation functions in equilibrium for two
models that violate semi-detailed balance. One is a model of interacting random
walkers on a line, the other one is a two-dimensional fluid type model on a
triangular lattice. The numerical predictions agree very well with computer
simulations.Comment: 31 pages LaTeX, 12 uuencoded tar-compressed Encapsulated PostScript
figures (`psfig' macro), hardcopies available on request, 78kb + 52k
Biliary and pancreatic lithotripsy devices
© 2018 Background and Aims: Lithotripsy is a procedure for fragmentation or destruction of stones to facilitate their removal or passage from the biliary or pancreatic ducts. Although most stones may be removed endoscopically using conventional techniques such as endoscopic sphincterotomy in combination with balloon or basket extraction, lithotripsy may be required for clearance of large, impacted, or irregularly shaped stones. Several modalities have been described, including intracorporeal techniques such as mechanical lithotripsy (ML), electrohydraulic lithotripsy (EHL), and laser lithotripsy, as well as extracorporeal shock-wave lithotripsy (ESWL). Methods: In this document, we review devices and methods for biliary and pancreatic lithotripsy and the evidence regarding efficacy, safety, and financial considerations. Results: Although many difficult stones can be safely removed using ML, endoscopic papillary balloon dilation (EPBD) has emerged as an alternative that may lessen the need for ML and also reduce the rate of adverse events. EHL and laser lithotripsy are effective at ductal clearance when conventional techniques are unsuccessful, although they usually require direct visualization of the stone by the use of cholangiopancreatoscopy and are often limited to referral centers. ESWL is effective but often requires coordination with urologists and the placement of stents or drains with subsequent procedures for extracting stone fragments and, thus, may be associated with increased costs. Conclusions: Several lithotripsy techniques have been described that vary with respect to ease of use, generalizability, and cost. Overall, lithotripsy is a safe and effective treatment for difficult biliary and pancreatic duct stones
Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems
The theoretical framework for higher-order correlation functions involving
multiple times and multiple points in a classical, many-body system developed
by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to
include tagged particle densities. Such densities have found an intriguing
application as proposed measures of dynamical heterogeneities in structural
glasses. The theoretical formalism is based upon projection operator techniques
which are used to isolate the slow time evolution of dynamical variables by
expanding the slowly-evolving component of arbitrary variables in an infinite
basis composed of the products of slow variables of the system. The resulting
formally exact mode-coupling expressions for multiple-point and multiple-time
correlation functions are made tractable by applying the so-called N-ordering
method. This theory is used to derive for moderate densities the leading mode
coupling expressions for indicators of relaxation type and domain relaxation,
which use dynamical filters that lead to multiple-time correlations of a tagged
particle density. The mode coupling expressions for higher order correlation
functions are also succesfully tested against simulations of a hard sphere
fluid at relatively low density.Comment: 15 pages, 2 figure
Multiple-Point and Multiple-Time Correlations Functions in a Hard-Sphere Fluid
A recent mode coupling theory of higher-order correlation functions is tested
on a simple hard-sphere fluid system at intermediate densities. Multi-point and
multi-time correlation functions of the densities of conserved variables are
calculated in the hydrodynamic limit and compared to results obtained from
event-based molecular dynamics simulations. It is demonstrated that the mode
coupling theory results are in excellent agreement with the simulation results
provided that dissipative couplings are included in the vertices appearing in
the theory. In contrast, simplified mode coupling theories in which the
densities obey Gaussian statistics neglect important contributions to both the
multi-point and multi-time correlation functions on all time scales.Comment: Second one in a sequence of two (in the first, the formalism was
developed). 12 pages REVTeX. 5 figures (eps). Submitted to Phys.Rev.
Crowd guilds: Worker-led reputation and feedback on crowdsourcing platforms
Crowd workers are distributed and decentralized. While decentralization is designed to utilize independent judgment to promote high-quality results, it paradoxically undercuts behaviors and institutions that are critical to high-quality work. Reputation is one central example: crowdsourcing systems depend on reputation scores from decentralized workers and requesters, but these scores are notoriously inflated and uninformative. In this paper, we draw inspiration from historical worker guilds (e.g., in the silk trade) to design and implement crowd guilds: centralized groups of crowd workers who collectively certify each other’s quality through double-blind peer assessment. A two-week field experiment compared crowd guilds to a traditional decentralized crowd work model. Crowd guilds produced reputation signals more strongly correlated with ground-truth worker quality than signals available on current crowd working platforms, and more accurate than in the traditional model
Pharmacological Undertreatment of Coronary Risk Factors in Patients with Psoriasis: Observational Study of the Danish Nationwide Registries
BACKGROUND: Patients with psoriasis have increased prevalence of coronary risk factors and limited recent results have suggested that these risk factors are undertreated in patients with psoriasis. This may contribute to the increased risk of cardiovascular diseases observed in patients with psoriasis. OBJECTIVE: To examine the pharmacological treatment of coronary risk factors in patients with severe psoriasis treated with biologic agents in a real-world setting. METHODS AND FINDINGS: Medical history of patients with severe psoriasis treated with biologic agents in the time period 2007-09 was retrieved from a Danish nationwide registry (DERMBIO). Individual-level linkage of nationwide administrative registries of hospitalizations, concomitant medications, and socioeconomic status was performed to gain insights into the use of pharmacological treatment. A total of 693 patients (mean age 46.1 ± 12.7 years, 65.7% male) with severe psoriasis treated with biologic agents were identified. Hypertension, hypercholesterolemia, and diabetes mellitus were identified in 16.6%, 9.2%, and 6.7% of cases, respectively. Patients with severe psoriasis were significantly less likely to receive cardiovascular pharmacotherapy compared to age, sex, and coronary risk factor matched controls. In psoriatic patients with hypertension 27.7% received no antihypertensive pharmacotherapy. Patients with dyslipidemia received cholesterol-lowering medications in 55.8% of cases and patients with diabetes mellitus received angiotensin converting enzyme inhibitors/angiotensin II receptor blockers and cholesterol-lowering medications in 42.1% and 23.7% of cases, respectively. Similar results were found for the subset of patients with >1 coronary risk factor and for high risk patients with established atherosclerotic disease. CONCLUSION: This nationwide study of patients with severe psoriasis demonstrated substantial undertreatment of coronary risk factors. Increased focus on identifying cardiovascular risk factors and initiation of preventive cardiovascular pharmacotherapy in patients with psoriasis is warranted
- …