77 research outputs found

    Increased choroidal thickness in adults with Down syndrome.

    Get PDF
    INTRODUCTION: People with Down syndrome (DS) are particularly susceptible to Alzheimer's disease (AD) due to the triplication of the amyloid precursor protein (APP) gene. In this cross-sectional study, we hypothesized that choroidal thinning reported in sporadic AD (sAD) is mirrored in adults with DS. METHODS: The posterior pole of the eye for 24 adults with DS and 16 age-matched controls (Ctrl) were imaged with optical coherence tomography. Choroidal thickness (ChT) was measured and analyzed in relation to cognitive status and cerebral amyloid beta (Aβ) load. RESULTS: ChT was increased in people with DS (pwDS) compared to Ctrl. This increase was associated with gender differences and positively correlated with cerebral Aβ load in a small subset. There was no significant correlation detected between ChT and age or cognitive status. DISCUSSION: In contrast to sAD this study found a significantly thicker choroid in pwDS. Whether these changes are related to Aβ pathology in DS needs further investigation

    Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    Get PDF
    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection

    Mannose-Binding Lectin 2 Gene and Risk of Adult Glioma

    Get PDF
    Collection of specimens in this study, including funding: JMG JM MS SST DJH CAC. Selection of genes and SNPs to include in the analysis: FCFC MES. Manuscript editing: DMB DGC MS SST CAC ATP. Conceived and designed the experiments: DSM ATP. Performed the experiments: AS. Analyzed the data: DSM AS DGC. Wrote the paper: DSM.Background and AimsThe immune system is likely to play a key role in the etiology of gliomas. Genetic polymorphisms in the mannose-binding lectin gene, a key activator in the lectin complement pathway, have been associated with risk of several cancers.MethodsTo examine the role of the lectin complement pathway, we combined data from prospectively collected cohorts with available DNA specimens. Using a nested case-control design, we genotyped 85 single nucleotide polymorphisms (SNPs) in 9 genes in the lectin complement pathway and 3 additional SNPs in MBL2 were tested post hoc). Initial SNPs were selected using tagging SNPs for haplotypes; the second group of SNPs for MBL2 was selected based on functional SNPs related to phenotype. Associations were examined using logistic regression analysis. All statistical tests were two-sided. Nominal p-values are presented and are not corrected for multiple comparisons.ResultsA total of 143 glioma cases and 419 controls were available for this analysis. Statistically significant associations were observed for two SNPs in the mannose-binding lectin 2 (ML2) gene and risk of glioma (rs1982266 and rs1800450, test for trend p = 0.003 and p = 0.04, respectively, using the additive model). One of these SNPs, rs1800450, was associated with a 58% increase in glioma risk among those carrying one or two mutated alleles (odds ratio = 1.58, 95% confidence interval = 0.99–2.54), compared to those homozygous for the wild type allele.ConclusionsOverall, our findings suggest that MBL may play a role in the etiology of glioma. Future studies are needed to confirm these findings which may be due to chance, and if reproduced, to determine mechanisms that link glioma pathogenesis with the MBL complement pathway.Yeshttp://www.plosone.org/static/editorial#pee

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Remarkable regression of optic glioma in an infant

    No full text

    Coats’ disease: not such a smooth ride

    No full text
    corecore