9 research outputs found

    New mechanism for modulating colour vision

    No full text

    Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra

    No full text
    Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution

    Speciation through sensory drive in cichlid fish

    No full text
    Theoretically, divergent selection on sensory systems can cause speciation through sensory drive. However, empirical evidence is rare and incomplete. Here we demonstrate sensory drive speciation within island populations of cichlid fish. We identify the ecological and molecular basis of divergent evolution in the cichlid visual system, demonstrate associated divergence in male colouration and female preferences, and show subsequent differentiation at neutral loci, indicating reproductive isolation. Evidence is replicated in several pairs of sympatric populations and species. Variation in the slope of the environmental gradients explains variation in the progress towards speciation: speciation occurs on all but the steepest gradients. This is the most complete demonstration so far of speciation through sensory drive without geographical isolation. Our results also provide a mechanistic explanation for the collapse of cichlid fish species diversity during the anthropogenic eutrophication of Lake Victoria

    Absorbance of retinal oil droplets of the budgerigar : sex, spatial and plumage morph-related variation

    Full text link
    Intraspecific variation in photoreceptor physiology is known in several vertebrate taxa, but is currently unknown in birds, despite many avian traits varying intraspecifically, and avian visual ecology encompassing a wide range of environments and visual stimuli, which might influence spectral sensitivity. Avian retinal photoreceptors contain light absorbing carotenoid-rich oil droplets that affect vision. Carotenoids are also important plumage components. However, our understanding of the regulation of carotenoids in oil droplets remains rudimentary. Among birds, Melopsittacus undulatus has probably the best-studied colour vision, shows profound intraspecific variation in plumage colour, and increased plasma carotenoids during moult. We used microspectrophotometry to determine whether a relationship exists between oil droplet carotenoid concentration and plumage pigmentation, and tested for sex and spatial variation in droplet absorbance across the retina. Absorbance of one variety of P-type droplets was higher in males. No relationship was found between droplet absorbance and plumage colour. We found a spatial pattern of droplets absorbance across the retina that matched a pattern found in another parrot, and other avian species. Our work provides insights into the development and maintenance of retinal oil droplets and suggests a common mechanism and function for carotenoid deposition in the retina across bird species

    Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    No full text
    corecore