5,633 research outputs found
P78-2 (SCATHA) satellite thermal balance test, a laboratory test
Space simulation test programs can be carried out with a high probability of being troublefree with a competent staff, a well-maintained test facility and attention to interfaces; however, full-up thermal balance tests using the solar simulator, temperature control of infrared sources, the gimbal, a large number of thermocouples, and other requirements for a high fidelity thermal balance are still a challenge. The P78-2 (Scatha) satellite was successfully tested with one interruption and a four-day abbreviated retest to verify a modification. This was accomplished in spite of the new test crew, a facility beset with several operational problems, and marginal interface control. These problems were addressed with very good results. Subsequent tests have been highly successful
Computational algorithms for increased control of depth-viewing volume for stereo three-dimensional graphic displays
Three-dimensional pictorial displays incorporating depth cues by means of stereopsis offer a potential means of presenting information in a natural way to enhance situational awareness and improve operator performance. Conventional computational techniques rely on asymptotic projection transformations and symmetric clipping to produce the stereo display. Implementation of two new computational techniques, as asymmetric clipping algorithm and piecewise linear projection transformation, provides the display designer with more control and better utilization of the effective depth-viewing volume to allow full exploitation of stereopsis cuing. Asymmetric clipping increases the perceived field of view (FOV) for the stereopsis region. The total horizontal FOV provided by the asymmetric clipping algorithm is greater throughout the scene viewing envelope than that of the symmetric algorithm. The new piecewise linear projection transformation allows the designer to creatively partition the depth-viewing volume, with freedom to place depth cuing at the various scene distances at which emphasis is desired
Determination of depth-viewing volumes for stereo three-dimensional graphic displays
Real-world, 3-D, pictorial displays incorporating true depth cues via stereopsis techniques offer a potential means of displaying complex information in a natural way to prevent loss of situational awareness and provide increases in pilot/vehicle performance in advanced flight display concepts. Optimal use of stereopsis requires an understanding of the depth viewing volume available to the display designer. Suggested guidelines are presented for the depth viewing volume from an empirical determination of the effective region of stereopsis cueing (at several viewer-CRT screen distances) for a time multiplexed stereopsis display system. The results provide the display designer with information that will allow more effective placement of depth information to enable the full exploitation of stereopsis cueing. Increasing viewer-CRT screen distances provides increasing amounts of usable depth, but with decreasing fields-of-view. A stereopsis hardware system that permits an increased viewer-screen distance by incorporating larger screen sizes or collimation optics to maintain the field-of-view at required levels would provide a much larger stereo depth-viewing volume
Correction techniques for depth errors with stereo three-dimensional graphic displays
Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays
Turbulence and Mixing in the Intracluster Medium
The intracluster medium (ICM) is stably stratified in the hydrodynamic sense
with the entropy increasing outwards. However, thermal conduction along
magnetic field lines fundamentally changes the stability of the ICM, leading to
the "heat-flux buoyancy instability" when and the "magnetothermal
instability" when . The ICM is thus buoyantly unstable regardless of
the signs of and . On the other hand, these
temperature-gradient-driven instabilities saturate by reorienting the magnetic
field (perpendicular to when and parallel to when ), without generating sustained convection. We show that
after an anisotropically conducting plasma reaches this nonlinearly stable
magnetic configuration, it experiences a buoyant restoring force that resists
further distortions of the magnetic field. This restoring force is analogous to
the buoyant restoring force experienced by a stably stratified adiabatic
plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or
cosmic-ray buoyancy) to overcome this restoring force and generate turbulence
in the ICM, the strength of the driving must exceed a threshold, corresponding
to turbulent velocities . For weaker driving, the ICM
remains in its nonlinearly stable magnetic configuration, and turbulent mixing
is effectively absent. We discuss the implications of these findings for the
turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The
Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the
general mixing properties of the IC
Effect of short-term exposure to stereoscopic three-dimensional flight displays on real-world depth perception
High-fidelity color pictorial displays that incorporate depth cues in the display elements are currently available. Depth cuing applied to advanced head-down flight display concepts potentially enhances the pilot's situational awareness and improves task performance. Depth cues provided by stereopsis exhibit constraints that must be fully understood so depth cuing enhancements can be adequately realized and exploited. A fundamental issue (the goal of this investigation) is whether the use of head-down stereoscopic displays in flight applications degrade the real-world depth perception of pilots using such displays. Stereoacuity tests are used in this study as the measure of interest. Eight pilots flew repeated simulated landing approaches using both nonstereo and stereo 3-D head-down pathway-in-the-sky displays. At this decision height of each approach (where the pilot changes to an out-the-window view to obtain real-world visual references) the pilots changed to a stereoacuity test that used real objects. Statistical analysis of stereoacuity measures (data for a control condition of no exposure to any electronic flight display compared with data for changes from nonstereo and from stereo displays) reveals no significant differences for any of the conditions. Therefore, changing from short-term exposure to a head-down stereo display has no more effect on real-world relative depth perception than does changing from a nonstereo display. However, depth perception effects based on sized and distance judgements and on long-term exposure remain issues to be investigated
Immersive Learning Research Network
Computer games have now been around for over three decades and the term serious games has been attributed to the use of computer games that are thought to have educational value. Game-based learning (GBL) has been applied in a number of different fields such as medicine, languages and software engineering. Furthermore, serious games can be a very effective as an instructional tool and can assist learning by providing an alternative way of presenting instructions and content on a supplementary level, and can promote student motivation and interest in subject matter resulting in enhanced learning effectiveness. REVLAW (Real and Virtual Reality Law) is a research project that the departments of Law and Computer Science of Westminster University have proposed as a new framework in which law students can explore a real case scenario using Virtual Reality (VR) technology to discover important pieces of evidence from a real-given scenario and make up their mind over the crime case if this is a murder or not. REVLAW integrates the immersion into VR as the perception of being physically present in a non-physical world. The paper presents the prototype framework and the mechanics used to make students focus on the crime case and make the best use of this immersive learning approach
Daytime ClO over McMurdo in September 1987: Altitude profile retrieval accuracy
During the 1987 National Ozone Expedition, mm-wave emission line spectra of the 278.6 GHz rotational stratospheric ClO were observed at McMurdo Station, Antarctica. The results confirm the 1986 discovery of a lower stratospheric layer with approximately 100 times the normal amount of ClO; the 1987 observations, made with a spectrometer bandwidth twice that used in 1986, make possible a more accurate retrieval of the altitude profile of the low altitude component of stratospheric ClO from the pressure broadened line shape, down to approximately 16 km. The accuracy of the altitude profile retrievals is discussed, using the daytime (09:30 to 19:30, local time) data from 20 to 24 September, 1987 as an example. The signal strength averaged over this daytime period is approx. 85 percent of the midday peak value. The rate of ozone depletion implied by the observed ClO densities is also discussed
Quantitative observations of the behavior of anomalous low altitude ClO in the Antarctic spring Stratosphere, 1987
During the second National Ozone Expedition ground-based observations at McMurdo Station Antarctica were performed which resulted in a second season's measurement of abnormally large amounts of ClO in the Antarctic spring stratosphere. The original measurements of 1986, in which the presence of this anomalous layer was first discovered, were limited in low altitude recovery of the ClO mixing ratio profile by the restrictions of the spectral bandwidth (256 MHz) which was used to measure the pressure-broadened ClO emission line shape. The 1987 measurements were marked by the use of twice the spectral bandpass employed the previous year, and allow a better characterization of the ClO mixing ratio profile in the critical altitude range 18 to 25 km. In-situ aircraft measurements of ClO made over the Palmer Peninsula during Aug. and Sept. of 1987 by Anderson, et al. effectively determined the important question of the ClO mixing ratio profile at altitudes inaccessible to our technique, below approximately 18 to 18.5 km. These flights did not penetrate further than 75 deg S, however, (vs 78 deg S for McMurdo) and were thus limited to coverage near the outer boundaries of the region of severest ozone depletion over Antarctica in 1987, did not reach an altitude convincingly above that of the peak mixing ratio for ClO, and were not able to make significant observations of the diurnal variation of ClO. The two techniques, and the body of data recovered by each, thus complement one another in producing a full picture of the anomalous ClO layer intimately connected with the region of Antarctic spring ozone depletion. An analysis is presented of the mixing ratio profile from approximately 18 to 45 km, the diurnal behavior, and the secular change in ClO over McMurdo Station during Sept. and early Oct. 1987
- …