76 research outputs found

    SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Get PDF
    BACKGROUND: SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. METHODS: We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. RESULTS: Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. CONCLUSION: Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML

    Bortezomib modulates CHIT1 and YKL40 in monocyte-derived osteoclast and in myeloma cells

    Get PDF
    Osteolytic bone disease is a common manifestation of multiple myeloma (MM) that leads to progressive skeleton destruction and is the most severe cause of morbidity in MM patients.It results from increased osteolytic activity and decrease osteoblastic function. Activation of mammalian chitinases CHIT1 and YKL40 is associated with osteoclast (OCs) differentiation and bone digestion. In the current study, we investigated the effect of two Bortezomib’s concentration (BO) (2.5 nM and 5nM) on osteoclastogenesis by analyzing regulation of chitinase expression. OCs exposition to BO was able to inhibit the expression of different OCs markers such as RANK, CTSK, TRAP and MMP9. In addition BO-treatment reduced CHIT1 enzymatic activity and both CHIT1 and YKL40 mRNA expression levels and cytoplasmatic and secreted protein. Moreover, immunofluorescence evaluation of mature OCs showed that BO was able to translocate YKL40 into the nucleus, while CHIT1 remained into the cytoplasm. Since MM cell lines such as U266, SKM-M1 and MM1 showed high levels of CHIT1 activity, we analyzed bone resorption ability of U266 using dentin disc assay resorption pits. Silencing chitinase proteins in U266 cell line with specific siRNAs, resulted in pits number reduction on dentine discs. In conclusion, we showed that BO decreases osteoclastogenesis and reduces bone resorption in OCs and U266 cell line by modulating the chitinases CHIT1 and YKL40. These results indicate that chitinases may be a therapeutic target for bone disease in MM patients

    Clinical prognostic factors for older people: A systematic review and meta-analysis

    Get PDF
    Objective: To explore the accuracy and precision of prognostic tools used in older people in predicting mortality, hospitalization, and nursing home admission across different settings and timings. Design: Systematic review and meta-analysis of prospective and retrospective studies. Data sources: A systematic search from database inception until 01st February 2023 was run in Medline, Embase, Cinhal, Cochrane Library. Eligibility criteria: Studies were eligible if they reported accuracy (area under the curve [AUC]) and/or precision (C-index) for the prognostic index in relation to any of the following outcomes: mortality, hospitalization, and nursing home admission. Data extraction and synthesis: Two independent reviewers extracted data. Data were pooled using a random effects model. The risk of bias was assessed with the Quality in Prognosis Studies (QUIPS) tool. If more than three studies for the same setting and time were available, a meta-analysis was performed and evaluated using the GRADE tool; other data were reported descriptively. Results: Among 16,082 studies initially considered, 159 studies with a total of 2398856 older people (mean age: 78 years) were included. The majority of the studies was carried out in hospital or medical wards. In the community setting, only two tools (Health Assessment Tool and the Multidimensional Prognostic Index, MPI) had good precision for long-term mortality. In emergency department setting, Barthel Index had an excellent accuracy in predicting short-term mortality. In medical wards, the MPI had a moderate certainty of the evidence in predicting short-term mortality (13 studies; 11,787 patients; AUC=0.79 and 4 studies; 3915 patients; C-index=0.82). Similar findings were available for MPI when considering longer follow-up periods. When considering nursing home and surgical wards, the literature was limited. The risk of bias was generally acceptable; observed bias was mainly owing to attrition and confounding. Conclusions: Several tools are used to predict poor prognosis in geriatric patients, but only those derived from a multidimensional evaluation have the characteristics of precision and accuracy

    In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection

    Get PDF
    : Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naĂŻve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1β, IL-17A and IFN-Îł. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-Îł and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients' sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1β, IFN-Îł and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment

    Potential clinical impact of T-cell lymphocyte kinetics monitoring in patients with B cell precursors acute lymphoblastic leukemia treated with blinatumomab: a single-center experience

    Get PDF
    Blinatumomab is a bispecific anti-CD3 and anti-CD19 antibody that acts as a T-cell engager: by binding CD19+ lymphoblasts, blinatumomab recruits cytotoxic CD3+ T-lymphocytes to target the cancer cells. Here we describe seven different patients affected by B-cell precursor acute lymphoblastic leukemia (Bcp-ALL) and treated with blinatumomab, on which we evaluated the potential association between the amount of different T-cells subsets and deep molecular response after the first cycle, identified as a complete remission in the absence of minimal residual disease (CR/MRD). The immune-system effector cells studied were CD3+, CD4+ effector memory (T4-EM), CD8+ effector memory (T8-EM), and T-regulatory (T-reg) lymphocytes, and myeloid-derived suppressor cells (MDSC). Measurements were performed in the peripheral blood using flow cytometry of the peripheral blood at baseline and after the first cycle of blinatumomab. The first results show that patients with a higher proportion of baseline T-lymphocytes achieved MRD negativity more frequently with no statistically significant difference (p=0.06) and without differences in the subpopulation count following the first treatment. These extremely preliminary data could potentially pave the way for future studies, including larger and less heterogeneous cohorts, in order to assess the T-cell kinetics in a specific set of patients with potential synergy effects in targeting myeloid-derived suppressor cells (MDSC), commonly known to have an immune evasion mechanism in Bcp-ALL

    A candidate ion-retaining state in the inward-facing conformation of sodium/galactose symporter: Clues from atomistic simulations

    Get PDF
    The recent Vibrio parahaemolyticus sodium/galactose (vSGLT) symporter crystal structure captures the protein in an inward-facing substrate-bound conformation, with the sodium ion placed, by structural alignment, in a site equivalent to the Na2 site of the leucine transporter (LeuT). A recent study, based on molecular dynamics simulations, showed that the sodium ion spontaneously leaves its initial position diffusing outside vSGLT, toward the intracellular space. This suggested that the crystal structure corresponds to an ion-releasing state of the transporter. Here, using metadynamics, we identified a more stable Na+ binding site corresponding to a putative ion-retaining state of the transporter. In addition, our simulations, consistently with mutagenesis studies, highlight the importance of D189 that, without being one of the NA(+)-coordinating residues, regulates its binding/release

    Chk1 Inhibition Restores Inotuzumab Ozogamicin Citotoxicity in CD22-Positive Cells Expressing Mutant p53

    Get PDF
    Inotuzumab ozogamicin (IO) is an anti-CD22 calicheamicin immunoconjugate that has been recently approved for the treatment of relapsed or refractory B-Acute Lymphoblastic Leukemia (r/r B-ALL). We employed both immortalized and primary cells derived from CD22-positive lymphoproliferative disorders to investigate the signaling pathways contributing to IO sensitivity or resistance. We found that the drug reduced the proliferation rate of CD22-positive cell lines expressing wild-type p53, but was remarkably less effective on cells exhibiting mutant p53. In addition, CD22-positive cells surviving IO were mostly blocked in the G2/M phase of the cell cycle because of Chk1 activation that, in the presence of a wild-type p53 background, led to p21 induction. When we combined IO with the Chk1 inhibitor UCN-01, we successfully abrogated IO-induced G2/M arrest regardless of the underlying p53 status, indicating that the DNA damage response triggered by IO is also modulated by p53-independent mechanisms. To establish a predictive value for p53 in determining IO responsiveness, we expressed mutant p53 in cell lines displaying the wild-type gene and observed an increase in IO IC50 values. Likewise, overexpression of an inducible wild-type p53 in cells natively presenting a mutant protein decreased their IC50 for IO. These results were also confirmed in primary CD22-positive cells derived from B-ALL patients at diagnosis and from patients with r/r B-ALL. Furthermore, co-treatment with IO and UCN-01 significantly increased cell death in primary cells expressing mutant p53. In summary, our findings suggest that p53 status may represent a biomarker predictive of IO efficacy in patients diagnosed with CD22-positive malignancies
    • …
    corecore