29 research outputs found
Sexual selection predicts the persistence of populations within altered environments
The effect of sexual selection on species persistence remains unclear. The cost of bearing ornaments or armaments might increase extinction risk, but sexual selection can also enhance the spread of beneficial alleles and increase the removal of deleterious alleles, potentially reducing extinction risk. Here we investigate the effect of sexual selection on species persistence in a community of 34 species of dung beetles across a gradient of environmental disturbance ranging from old growth forest to oil palm plantation. Horns are sexually selected traits used in contests between males, and we find that both horn presence and relative size are strongly positively associated with species persistence and abundance in altered habitats. Testes mass, an indicator of post-copulatory selection, is, however, negatively linked with the abundance of species within the most disturbed habitats. This study represents the first evidence from a field system of a population-level benefit from pre-copulatory sexual selection
Riparian buffers can help mitigate biodiversity declines in oil palm agriculture
Agricultural expansion is a primary driver of biodiversity decline in forested regions of the tropics. Consequently, it is important to understand the conservation value of remnant forests in production landscapes. In a tropical landscape dominated by oil palm (Elaeis guineensis), we characterized faunal communities across eight taxa occurring within riparian forest buffers, which are legally protected alongside rivers, and compared them to nearby recovering logged forest. Buffer width was the main predictor of species richness and abundance, with widths of 40–100 m on each side of the river supporting broadly equivalent levels of biodiversity as compared to logged forest. However, width responses varied markedly among taxa, and buffers often lacked forest-dependent species. Much wider buffers than are currently mandated are needed to safeguard most species. The largest biodiversity gains are achieved by increasing relatively narrow buffers. To provide optimal conservation outcomes in tropical production landscapes, we encourage policy makers to prescribe width requirements for key taxa and different landscape contexts
Thresholds for adding degraded tropical forest to the conservation estate
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Strong sexual selection fails to protect against inbreeding-driven extinction in a moth
Sexual selection is predicted to influence population persistence because skew in male reproductive success may facilitate the purging of mutation load. We manipulated the strength of sexual selection in populations of Indian meal moths, Plodia interpunctella, by adjusting adult sex ratios to be either male- or female-biased, leading to strong and weak sexual selection in males, respectively. After between 19 and 22 generations of experimental evolution, we examined whether mutation load differed between these populations by enforcing successive generations of inbreeding, tracking extinction events, offspring viability and assaying the effect of inbreeding on male mating success and female choice. We found no effect of the strength of sexual selection on the rate of extinction or offspring viability. We did, however, find changes in both male mating success and female choice, with both being influenced by the sex ratio treatment and the number of generations of inbreeding. Males from male-biased populations were more successful at mating with stock females, and mating success declined rapidly with inbreeding regardless of sex ratio treatment. Females from male-biased populations were less likely to mate with stock males at the onset of the experiment, but tended to mate more frequently with increasing inbreeding compared to females from female-biased populations. Our results demonstrate that while mating behaviors have diverged between male-biased and female-biased lines mutation loads remained similar. This suggests that the benefits of sexual selection to population fitness may be low or slow to accumulate under the benign environmental conditions in which these populations evolved
Recommended from our members
Riparian buffers can help mitigate biodiversity declines in oil palm agriculture
Agricultural expansion drives biodiversity decline in forested tropical regions. Consequently, it is important to understand the conservation value of remnant forest in production landscapes. In a tropical landscape dominated by oil palm we characterized faunal communities across eight taxa occurring within riparian forest buffers, which are legally protected alongside rivers, and compared them to nearby recovering logged forest. Buffer width was the main predictor of species richness and abundance, with widths of 40-100 m on each side of the river supporting broadly equivalent levels of biodiversity to logged forest. However, width responses varied markedly among taxa, and buffers often lacked forest-dependent species. Much wider buffers than are currently mandated are needed to safeguard most species. The largest biodiversity gains are achieved by increasing relatively narrow buffers. To provide optimal conservation outcomes in tropical production landscapes we encourage policymakers to prescribe width requirements for key taxa and different landscape contexts.Newton-Ungku Omar Fund (grants 216433953, 537134717) – delivered by the British Council and funded by the UK Department for Business, Energy and Industrial Strategy and the Malaysian Industry-Government Group for High Technology – as well as the UK Natural Environment Research Council (NE/K016407/1, NE/K016261/1; https://lombok.nerc-hmtf.info/). MJS was supported by a Research Leadership Award from the Leverhulme Trust