6,802 research outputs found
Development of Surfaces Optically Suitable for Flat Solar Panels
Innovations in reflectometry techniques are described; and the development of an absorbing selective coating is discussed along with details of surface properties. Conclusions as to the parameterization desired for practical applications of selective surfaces are provided
Comment on "Modifying the variational principle in the action integral functional derivation of time-dependent density functional theory" by Jochen Schirmer [arXiv:1010.4223]
In a paper recently published in Phys. Rev. A [arXiv:1010.4223], Schirmer has
criticized an earlier work of mine [arXiv:0803.2727], as well as the
foundations of time-dependent density functional theory. In Ref.[2], I showed
that the so-called "causality paradox" - i.e., the failure of the
exchange-correlation potential derived from the Runge-Gross time-dependent
variational principle to satisfy causality requirements - can be solved by a
careful reformulation of that variational principle. Fortunately, the criticism
presented in Ref.[1] is based on elementary misunderstandings of the nature of
functionals, gauge transformations, and the time-dependent variational
principle. In this Comment I wish to point out and clear these
misunderstandings.Comment: 4 pages. Accepted for publication in Phys. Rev.
INTERNATIONAL TRADE POLICY: CHALLENGES AND OPPORTUNITIES FOR U.S. AGRICULTURE
International Relations/Trade,
The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)
MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower
First principles investigation of finite-temperature behavior in small sodium clusters
A systematic and detailed investigation of the finite-temperature behavior of
small sodium clusters, Na_n, in the size range of n= 8 to 50 are carried out.
The simulations are performed using density-functional molecular-dynamics with
ultrasoft pseudopotentials. A number of thermodynamic indicators such as
specific heat, caloric curve, root-mean-square bond length fluctuation,
deviation energy, etc. are calculated for each of the clusters. Size dependence
of these indicators reveals several interesting features. The smallest clusters
with n= 8 and 10, do not show any signature of melting transition. With the
increase in size, broad peak in the specific heat is developed, which
alternately for larger clusters evolves into a sharper one, indicating a
solidlike to liquidlike transition. The melting temperatures show irregular
pattern similar to experimentally observed one for larger clusters [ M. Schmidt
et al., Nature (London) 393, 238 (1998) ]. The present calculations also reveal
a remarkable size-sensitive effect in the size range of n= 40 to 55. While
Na_40 and Na_55 show well developed peaks in the specific heat curve, Na_50
cluster exhibits a rather broad peak, indicating a poorly-defined melting
transition. Such a feature has been experimentally observed for gallium and
aluminum clusters [ G. A. Breaux et al., J. Am. Chem. Soc. 126, 8628 (2004); G.
A.Breaux et al., Phys. Rev. Lett. 94, 173401 (2005) ].Comment: 8 pages, 11 figure
Two electrons on a hypersphere: a quasi-exactly solvable model
We show that the exact wave function for two electrons, interacting through a
Coulomb potential but constrained to remain on the surface of a
-sphere (), is a polynomial in the
interelectronic distance for a countably infinite set of values of the
radius . A selection of these radii, and the associated energies, are
reported for ground and excited states on the singlet and triplet manifolds. We
conclude that the model bears the greatest similarity to normal
physical systems.Comment: 4 pages, 0 figur
Hot-water aquifer storage: A field test
The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered
Hole polaron formation and migration in olivine phosphate materials
By combining first principles calculations and experimental XPS measurements,
we investigate the electronic structure of potential Li-ion battery cathode
materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that
determine small hole polaron formation and migration. We show that small hole
polaron formation depends on features in the electronic structure near the
valence-band maximum and that, calculationally, these features depend on the
methodology chosen for dealing with the correlated nature of the
transition-metal d-derived states in these systems. Comparison with experiment
reveals that a hybrid functional approach is superior to GGA+U in correctly
reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot
support small hole polarons, but that the other three compounds can. The
migration barrier is determined mainly by the strong or weak bonding nature of
the states at the top of the valence band, resulting in a substantially higher
barrier for LiMnPO4 than for LiCoPO4 or LiFePO4
Extended Thomas-Fermi Density Functional for the Unitary Fermi Gas
We determine the energy density and the gradient
correction of the extended Thomas-Fermi
(ETF) density functional, where is number density and is Fermi
energy, for a trapped two-components Fermi gas with infinite scattering length
(unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC)
calculations [Phys. Rev. Lett. {\bf 99}, 233201 (2007)]. In particular we find
that and give the best fit of the DMC data with an
even number of particles. We also study the odd-even splitting of the ground-state energy for the unitary gas in a
harmonic trap of frequency determining the constant . Finally
we investigate the effect of the gradient term in the time-dependent ETF model
by introducing generalized Galilei-invariant hydrodynamics equations.Comment: 7 pages, 3 figures, 1 table; corrected some typos; published in Phys.
Rev. A; added erratum: see also the unpublished diploma thesis of Marco
Manzoni (supervisors: N. Manini and L. Salasnich) at
http://www.mi.infm.it/manini/theses/manzoni.pd
A Multiobjective G.A./Fuzzy Logic augmented flight controller for an F16 aircraft.
An investigation is made in this paper of the pos- sibility of enhancing the performance of controllers of unstable systems while retaining safety critical function. In this case, a General Dynamics F16 fighter is considered in simulation. A fuzzy logic controller is designed and its membership functions tuned by Multiobjective Genetic Algorithms in order to design an augmented flight controller with enhanced manouverability which still retains safety critical operation. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom real-time flight simulator, and flight tested by a qualified pilot instructor
- …
