4 research outputs found
Prediction of probable impact of miR-34a and miR-215 on differentiation of naive CD4+ T cells to Th17 cells in multiple sclerosis
Background and aims: miRNAs, as a class of non-coding RNAs, take part in different cellular processes. Dysregulation of different miRNAs has been reported in numerous disorders to date. Multiple sclerosis (MS) is an autoimmune disease with high prevalence in Iran and Th17 cells play an important role in its pathogenesis. In the current study, we aimed to predict the possible role of miR-34a and miR-215 in the process of controlling Th17 differentiation, and hence, their possible impact on the onset and progression of MS.
Methods: We investigated probable interactions of miRNAs and genes that participate in Th17 cells differentiation using miRwalk database as an integrative one which utilizes 10 different algorithms to predict miRNA-mRNA interaction.
Results: Based on our findings, miR-34a and miR-215 were predicted to have a potential role in the induction of Th17 cells differentiation.
Conclusion: Conclusively, miR-34a and miR-215 may up-regulate Th17 cells of MS patients. Since bioinformatics data have shown that these miRNAs suppress negative regulatory genes in Th17 cells differentiation, we suppose that down-regulation of these miRNAs could ameliorate MS symptoms. Therefore, several therapeutic approaches may be considered for these miRNAs besides their application as valuable prognostic/diagnostic biomarkers in detection of various stages of MS.
Keywords: Multiple sclerosis, miRNA, Th17 cell
Integration of phytotherapy and chemotherapy: Recent advances in anticancer molecular pathways
Cancer is a disease characterized by abnormal and uncontrolled growth of cells, leading to invasion and metastasis to other tissues. Chemotherapy drugs are some of the primary treatments for cancer, which could detrimentally affect the cancer cells by various molecular mechanisms like apoptosis and cell cycle arrest. These treatment lines have always aligned with side effects and drug resistance. Due to their anticancer effects, medicinal herbs and their active derivative compounds are being profoundly used as complementary treatments for cancer. Many studies have shown that herbal ingredients exert antitumor activities and immune-modulation effects and have fewer side effects. On the other hand, combining phytotherapy and chemotherapy, with their synergistic effects, has gained much attention across the medical community. This review article discussed the therapeutic effects of essential herbal active ingredients combined with chemotherapeutic drugs in cancer therapy. To write this article, PubMed and Scopus database were searched with the keywords “Cancer,” “Combination,” “Herbal,” “Traditional,” and “Natural.” After applying inclusion/exclusion criteria, 110 articles were considered. The study shows the anticancer effects of the active herbal ingredients by inducing apoptosis and cell cycle arrest in cancer cells, especially with a chemotherapeutic agent. This study also indicates that herbal compounds can reduce side effects and dosage, potentiate anticancer responses, and sensitize cancer cells to chemotherapy drugs