297 research outputs found

    Ameliorative Potential of Morin in Streptozotocin-Induced Neuropathic Pain in Rats

    Get PDF
    Purpose: To investigate the protective effect of morin, a naturally occurring bioflavonoid of Moraceae family, in experimentally-induced diabetic neuropathy (DN) in rats.Methods: Diabetes was induced by a single injection (65 mg/kg, ip) of streptozotocin (STZ). Morin (15 and 30 mg/kg/day) oral treatment was started 3 weeks after diabetes induction and continued for 5 consecutive weeks. Pain threshold behavior tests were performed at the end of the treatment. In sciatic nerve, inflammatory cytokines (TNF-å, IL-1ù, IL-6), nerve growth factor (NGF) and insulin growth factor (IGF-1) were determined using ELISA kits, while thiobarbituric acid reactive substances (TBARS),glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were assessed.Results: Diabetic animals showed apparent decreased paw-withdrawal (39 %, p < 0.05) and tail-flick (31 %, p < 0.05) latency as compared with control group. All the measured biomarkers were altered (p < 0.05 to 0.001) in diabetic rats compared with control non-diabetic animals. Morin treatment attenuated hyperalgesia and analgesia (p < 0.05) respectively. Morin treatment of diabetic rats at both doses significantly decreased the levels of cytokines (p < 0.01), glucose (p < 0.01) and TBARS (p < 0.001), but increased NGF (p < 0.01), IGF-1 (p < 0.01) and GSH (p < 0.01) levels in sciatic nerves compared to untreated diabetic animals. Inhibited activities (U/mg protein) of SOD (1.08 ± 0.16) and CAT (2.77 ± 0.36) in sciatic nerve of diabetic rats also found corrections (2.09 ± 0.11, p < 0.01) and (4.53 ± 0.57, p < 0.01) after morin (30 mg/kg/day) treatment, compared with untreated diabetic animals.Conclusion: These findings demonstrate the protective effect of morin mediated through reduction of oxidative stress and inflammatory process, and suggest the therapeutic potential of morin in the attenuation of diabetic neuropathy.Keywords: Morin, Diabetes, Neuropathy pain, Oxidative stress, Anti-inflammator

    Statistical analysis plan for the motor neuron disease systematic multi-arm adaptive randomised trial (MND-SMART)

    Get PDF
    Background: MND-SMART is a platform, multi-arm, multi-stage, multi-centre, randomised controlled trial recruiting people with motor neuron disease. Initially, the treatments memantine and trazodone will each be compared against placebo, but other investigational treatments will be introduced into the trial later. The co-primary outcomes are the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALS-FRS-R) functional outcome, which is assessed longitudinally, and overall survival. Methods: Initially in MND-SMART, participants are randomised 1:1:1 via a minimisation algorithm to receive placebo or one of the two investigational treatments with up to 531 to be randomised in total. The comparisons between each research arm and placebo will be conducted in four stages, with the opportunity to cease further randomisations to poorly performing research arms at the end of stages 1 or 2. The final ALS-FRS-R analysis will be at the end of stage 3 and final survival analysis at the end of stage 4. The estimands for the co-primary outcomes are described in detail. The primary analysis of ALS-FRS-R at the end of stages 1 to 3 will involve fitting a normal linear mixed model to the data to calculate a mean difference in rate of ALS-FRS-R change between each research treatment and placebo. The pairwise type 1 error rate will be controlled, because each treatment comparison will generate its own distinct and separate interpretation. This publication is based on a formal statistical analysis plan document that was finalised and signed on 18 May 2022. Discussion: In developing the statistical analysis plan, we had to carefully consider several issues such as multiple testing, estimand specification, interim analyses, and statistical analysis of the repeated measurements of ALS-FRS-R. This analysis plan attempts to balance multiple factors, including minimisation of bias, maximising power and precision, and deriving clinically interpretable summaries of treatment effects. Trial registration: EudraCT Number, 2019–000099-41. Registered 2 October 2019, https://www.clinicaltrialsregister.eu/ctr-search/search?query=mnd-smart ClinicalTrials.gov, NCT04302870. Registered 10 March 2020

    Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

    Get PDF
    The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.National Heart, Lung, and Blood Institute (Grant HL090856-01)Singapore-MIT Allianc

    Efficacy of Major Plant Extracts/Molecules on Field Insect Pests

    Get PDF
    Insect pests are considered the major hurdle in enhancing the production and productivity of any farming system. The use of conventional synthetic pesticides has led to the emergence of pesticide-resistant insects, environmental pollution, and negative effects on natural enemies, which have caused an ecological imbalance of the predator-prey ratio and human health hazards; therefore, eco-friendly alternative strategies are required. The plant kingdom, a rich repertoire of secondary metabolites, can be tapped as an alternative for insect pest management strategies. A number of plants have been documented to have insecticidal properties against various orders of insects in vitro by acting as antifeedants, repellents, sterilant and oviposition deterrents, etc. However, only a few plant compounds are applicable at the field level or presently commercialised. Here, we have provided an overview of the broad-spectrum insecticidal activity of plant compounds from neem, Annona, Pongamia, and Jatropha. Additionally, the impact of medicinal plants, herbs, spices, and essential oils has been reviewed briefl

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore