73 research outputs found

    Species-specific differences in C-5 sterol desaturase function influence the outcome of azole antifungal exposure

    Get PDF
    The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3ÎČ,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity

    Small‐Molecule Inhibitors Targeting Sterol 14α‐Demethylase (CYP51): Synthesis, Molecular Modelling and Evaluation Against Candida albicans

    Get PDF
    Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2‐(4‐chlorophenyl)‐N‐(2,4‐dichlorobenzyl)‐3‐(1H‐imidazol‐1‐yl)propanamide (5 f ) <0.03 Όg/mL, N‐(4‐((4‐chlorophenyl)sulfonamido)benzyl)‐2‐phenyl‐3‐(1H‐1,2,4‐triazol‐1‐yl)propanamide (12 c ), 1 Όg/mL, fluconazole 0.125 Όg/mL) but both displayed comparable enzyme binding and inhibition (5 f K d 62±17 nM, IC50 0.46 ΌM; 12 c K d 43±18 nM, IC50 0.33 ΌM, fluconazole K d 41±13 nM, IC50 0.31 ΌM, posaconazole K d 43±11 nM, IC50 0.2 ΌM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c , was higher (21.5‐fold) than posaconazole (4.7‐fold) based on K d values, although posaconazole was more selective (615‐fold) than 12 c (461‐fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development

    Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51)

    Get PDF
    Herein, we have investigated the amebicidal activities of the pharmaceutical triazole CYP51 inhibitors fluconazole, itraconazole, and voriconazole against Acanthamoeba castellanii and Acanthamoeba polyphaga and assess their potential as therapeutic agents against Acanthamoeba infections in humans. Amebicidal activities of the triazoles were assessed by in vitro minimum inhibition concentration (MIC) determinations using trophozoites of A. castellanii and A. polyphaga. In addition, triazole effectiveness was assessed by ligand binding studies and inhibition of CYP51 activity of purified A. castellanii CYP51 (AcCYP51) that was heterologously expressed in Escherichia coli. Itraconazole and voriconazole bound tightly to AcCYP51 (dissociation constant [Kd] of 10 and 13 nM), whereas fluconazole bound weakly (Kd of 2,137 nM). Both itraconazole and voriconazole were confirmed to be strong inhibitors of AcCYP51 activity (50% inhibitory concentrations [IC50] of 0.23 and 0.39 ÎŒM), whereas inhibition by fluconazole was weak (IC50, 30 ÎŒM). However, itraconazole was 8- to 16-fold less effective (MIC, 16 mg/liter) at inhibiting A. polyphaga and A. castellanii cell proliferation than voriconazole (MIC, 1 to 2 mg/liter), while fluconazole did not inhibit Acanthamoeba cell division (MIC, >64 mg/liter) in vitro. Voriconazole was an effective inhibitor of trophozoite proliferation for A. castellanii and A. polyphaga; therefore, it should be evaluated in trials versus itraconazole for controlling Acanthamoeba infections

    Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence

    Get PDF
    Candida albicans is an opportunistic fungus responsible for the majority of systemic fungal infections. Multiple factors contribute to C. albicans pathogenicity. C. albicans strains lacking CaArv1 are avirulent. Arv1 has a conserved Arv1 homology domain (AHD) that has a zinc-binding domain containing two cysteine clusters. Here, we explored the role of the CaAHD and zinc-binding motif in CaArv1-dependent virulence. Overall, we found that the CaAHD was necessary but not sufficient for cells to be virulent, whereas the zinc-binding domain was essential, as Caarv1/Caarv1 cells expressing the full-length zinc-binding domain mutants, Caarv1C3S and Caarv1C28S, were avirulent. Phenotypically, we found a direct correlation between the avirulence of Caarv1/Caarv1, Caarrv1AHD, Caarv1C3S, and Caarv1C28S cells and defects in bud site selection, septa formation and localization, and hyphal formation and elongation. Importantly, all avirulent mutant strains lacked the ability to maintain proper sterol distribution. Overall, our results have established the importance of the AHD and zinc-binding domain in fungal invasion, and have correlated an avirulent phenotype with the inability to maintain proper sterol distribution

    The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme

    Get PDF
    Cryptococcosis is a life-threatening disease often associated with HIV infection. Three Cryptococcus species CYP51 enzymes were purified and catalyzed the 14α-demethylation of lanosterol, eburicol, and obtusifoliol. The investigational agent VT-1129 bound tightly to all three CYP51 proteins (dissociation constant [K(d)] range, 14 to 25 nM) with affinities similar to those of fluconazole, voriconazole, itraconazole, clotrimazole, and ketoconazole (K(d) range, 4 to 52 nM), whereas VT-1129 bound weakly to human CYP51 (K(d), 4.53 ÎŒM). VT-1129 was as effective as conventional triazole antifungal drugs at inhibiting cryptococcal CYP51 activity (50% inhibitory concentration [IC(50)] range, 0.14 to 0.20 ÎŒM), while it only weakly inhibited human CYP51 activity (IC(50), ∌600 ÎŒM). Furthermore, VT-1129 weakly inhibited human CYP2C9, CYP2C19, and CYP3A4, suggesting a low drug-drug interaction potential. Finally, the cellular mode of action for VT-1129 was confirmed to be CYP51 inhibition, resulting in the depletion of ergosterol and ergosta-7-enol and the accumulation of eburicol, obtusifolione, and lanosterol/obtusifoliol in the cell membranes

    Titration of C-5 Sterol Desaturase Activity Reveals Its Relationship to Candida albicans Virulence and Antifungal Susceptibility Is Dependent upon Host Immune Status

    Get PDF
    Mutations that completely inactivate Erg3p enable the prevalent human pathogen C. albicans to endure the azole antifungals in vitro . However, such null mutants are less frequently identified in azole-resistant clinical isolates than other resistance mechanisms, and previous studies have reported conflicting outcomes regarding antifungal resistance of these mutants in animal models of infection

    Loss of Upc2p-Inducible ERG3 Transcription Is Sufficient To Confer Niche-Specific Azole Resistance without Compromising Candida albicans Pathogenicity

    Get PDF
    Inactivation of sterol Δ5,6-desaturase (Erg3p) in the prevalent fungal pathogen Candida albicans is one of several mechanisms that can confer resistance to the azole antifungal drugs. However, loss of Erg3p activity is also associated with deficiencies in stress tolerance, invasive hyphal growth, and attenuated virulence in a mouse model of disseminated infection. This may explain why relatively few erg3-deficient strains have been reported among azole-resistant clinical isolates. In this study, we examined the consequences of Erg3p inactivation upon C. albicans pathogenicity and azole susceptibility in mouse models of mucosal and disseminated infection. While a C. albicans erg3Δ/Δ mutant was unable to cause lethality in the disseminated model, it induced pathology in a mouse model of vaginal infection. The erg3Δ/Δ mutant was also more resistant to fluconazole treatment than the wild type in both models of infection. Thus, complete loss of Erg3p activity confers azole resistance but also niche-specific virulence deficiencies. Serendipitously, we discovered that loss of azole-inducible ERG3 transcription (rather than complete inactivation) is sufficient to confer in vitro fluconazole resistance, without compromising C. albicans stress tolerance, hyphal growth, or pathogenicity in either mouse model. It is also sufficient to confer fluconazole resistance in the mouse vaginal model, but not in the disseminated model of infection, and thus confers niche-specific azole resistance without compromising C. albicans pathogenicity at either site. Collectively, these results establish that modulating Erg3p expression or activity can have niche-specific consequences on both C. albicans pathogenicity and azole resistanc

    Molecular characterization and sterol profiles identify nonsynonymous mutations in ERG2 as a major mechanism conferring reduced susceptibility to amphotericin B in candida kefyr

    Get PDF
    The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates

    Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis

    Get PDF
    Acanthamoeba keratitis is caused by a protozoal infection of the cornea, with 80% of cases involving the improper use of contact lenses. The infection causes intense pain and is potentially blinding. However, early diagnosis improves treatment efficacy and the chances of healing. Despite the apparent accessibility of the cornea, patients do not always respond well to current eye drop treatments largely due to rapid dose loss due to blinking and nasolacrimal drainage. Here, the topical drug delivery of voriconazole alone and in combination with diclofenac via drug-loaded contact lenses, were investigated in vitro. The contact lenses were applied onto excised porcine eyeballs and maintained at 32°C under constant irrigation, with simulated tear fluid applied to mimic in vivo conditions. The drug delivered to the corneas was quantified by HPLC analysis. The system was further tested in terms of cytotoxicity and a scratch wound repopulation model, using corneal epithelial cells. Sustained drug delivery to the cornea was achieved and for voriconazole, the MIC against Acanthamoeba castellanii was attained alone and in combination with diclofenac. MTT and scratch wound data showed reasonable cell proliferation and wound repopulation at the drug doses used, supporting further development of the system to treat Acanthamoeba keratitis
    • 

    corecore