2,433 research outputs found

    Magnetic eddy viscosity of mean shear flows in two-dimensional magnetohydrodynamics

    Get PDF
    Magnetic induction in magnetohydrodynamic fluids at magnetic Reynolds number (Rm) less than~1 has long been known to cause magnetic drag. Here, we show that when Rm≫1\mathrm{Rm} \gg 1 and the fluid is in a hydrodynamic-dominated regime in which the magnetic energy is much smaller than the kinetic energy, induction due to a mean shear flow leads to a magnetic eddy viscosity. The magnetic viscosity is derived from simple physical arguments, where a coherent response due to shear flow builds up in the magnetic field until decorrelated by turbulent motion. The dynamic viscosity coefficient is approximately (Bp2/2μ0)τcorr(B_p^2/2\mu_0) \tau_{\rm corr}, the poloidal magnetic energy density multiplied by the correlation time. We confirm the magnetic eddy viscosity through numerical simulations of two-dimensional incompressible magnetohydrodynamics. We also consider the three-dimensional case, and in cylindrical or spherical geometry, theoretical considerations similarly point to a nonzero viscosity whenever there is differential rotation. Hence, these results serve as a dynamical generalization of Ferraro's law of isorotation. The magnetic eddy viscosity leads to transport of angular momentum and may be of importance to zonal flows in astrophysical domains such as the interior of some gas giants.Comment: 16 pages, 8 figure

    Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Full text link
    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.Comment: 7 pages, 3 figure

    Investigation of a Multiple-Timescale Turbulence-Transport Coupling Method in the Presence of Random Fluctuations

    Full text link
    One route to improved predictive modeling of magnetically confined fusion reactors is to couple transport solvers with direct numerical simulations (DNS) of turbulence, rather than with surrogate models. An additional challenge presented by coupling directly with DNS is that the inherent fluctuations in the turbulence, which limit the convergence achievable in the transport solver. In this article, we investigate the performance of one numerical coupling method in the presence of turbulent fluctuations. To test a particular numerical coupling method for the transport solver, we use an autoregressive-moving-average model to efficiently generate stochastic fluctuations with statistical properties resembling those of a gyrokinetic simulation. These fluctuations are then added to a simple, solvable problem, and we examine the behavior of the coupling method. We find that monitoring the residual as a proxy for the error can be misleading. From a pragmatic point of view, this study aids us in the full problem of transport coupled to DNS by predicting the amount of averaging required to reduce the fluctuation error and obtain a specific level of accuracy.Comment: 18 pages, 9 figure
    • …
    corecore