1,911 research outputs found

    The Effective Δmee2\Delta m^2_{ee} in Matter

    Full text link
    In this paper we generalize the concept of an effective Δmee2\Delta m^2_{ee} for νe/νˉe\nu_e/\bar{\nu}_e disappearance experiments, which has been extensively used by the short baseline reactor experiments, to include the effects of propagation through matter for longer baseline νe/νˉe\nu_e/\bar{\nu}_e disappearance experiments. This generalization is a trivial, linear combination of the neutrino mass squared eigenvalues in matter and thus is not a simple extension of the usually vacuum expression, although, as it must, it reduces to the correct expression in the vacuum limit. We also demonstrated that the effective Δmee2\Delta m^2_{ee} in matter is very useful conceptually and numerically for understanding the form of the neutrino mass squared eigenstates in matter and hence for calculating the matter oscillation probabilities. Finally we analytically estimate the precision of this two-flavor approach and numerically verify that it is precise at the sub-percent level.Comment: 9 pages, 6 figures, 1 table, comments welcom

    Neutrino oscillation probabilities through the looking glass

    Full text link
    In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.Comment: 32 pages, 6 figure

    Using Spin Correlations to Distinguish Zh from ZA at the International Linear Collider

    Get PDF
    We investigate how to exploit the spin information imparted to the Z boson in associated Higgs production at a future linear collider as an aid in distinguishing between CP-even and CP-odd Higgs bosons. We apply a generalized spin-basis analysis which allowsus to study the possibilities offered by non-traditional choices of spin projection axis. In particular, we find that the Z bosons produced in association with a CP-even Higgs via polarized collisions are in a single transverse spin-state (>90% purity) when we use the Zh-transverse basis, provided that the Z~bosons are not ultra-relativistic (speed <0.9c). This same basis applied to the associated production of a CP-odd Higgs yields Z's that are an approximately equal mixture of longitudinal and transverse polarizations. We present a decay angular distribution which could be used to distinguish between the CP-even and CP-odd cases. Finally, we make a few brief remarks about how this distribution would be affected if the Higgs boson turns out to not be a CP-eigenstate.Comment: 48 pages, 18 figures, revtex

    Rotations versus perturbative expansions for calculating neutrino oscillation probabilities in matter

    Get PDF
    We further develop a simple and compact technique for calculating the three flavor neutrino oscillation probabilities in uniform matter density. By performing additional rotations instead of implementing a perturbative expansion we significantly decrease the scale of the perturbing Hamiltonian and therefore improve the accuracy of zeroth order. We explore the relationship between implementing additional rotations and that of performing a perturbative expansion. Based on our analysis, independent of the size of the matter potential, we find that the first order perturbation expansion can be replaced by two additional rotations and a second order perturbative expansion can be replaced by one more rotation. Numerical tests have been applied and all the exceptional features of our analysis have been verified.Comment: 15 pages, 4 figures, 1 table; Matches version published in PR

    Complex Lithofacies Relationships between the Ste. Genevieve and Paoli Limestones: Clarifying Reservoir Relationships in the Indiana Subsurface

    Get PDF
    This poster was presented at the American Association of Petroleum Geologists (AAPG) Eastern Section Meeting in Evansville, Indiana,on September 22, 2009.Typically irregular vertical and lateral distribution of lithofacies within the Ste. Genevieve and Paoli Limestones (Mississippian Blue River Group) has historically resulted in the inaccurate correlation of uppermost Ste. Genevieve lithologies (Joppa Member) with Paoli units of similar composition and appearance (Aux Vases and Renault Members). The Joppa Member of the Ste. Genevieve thins northeastward toward the Illinois Basin margin, losing the distinctive log signature that characterizes this unit in more basinward locations. The Aux Vases and Renault Members of the Paoli Limestone also become difficult to distinguish from each other and from the Joppa Member in basin margin locations because of rapid changes in composition and bed distribution. As a consequence, many Ste. Genevieve and Paoli Limestone pay zones have been assigned to the wrong reservoir pool, sometimes within the same field. Pay zones from Ste. Genevieve and Paoli Limestone reservoirs were reassigned according to current stratigraphic divisions. These new correlations more accurately reflect spatial relationships within and between hydrocarbon pools, and could contribute to more effective reservoir management. Improved correlations should also provide a useful tool for future hydrocarbon exploration and development activities in Indiana. Our investigation also suggests that revisions to formal Ste. Genevieve-Paoli stratigraphic nomenclature should be considered
    corecore