87,986 research outputs found

    Korean coastal water depth/sediment and land cover mapping (1:25,000) by computer analysis of LANDSAT imagery

    Get PDF
    Computer analysis was applied to single date LANDSAT MSS imagery of a sample coastal area near Seoul, Korea equivalent to a 1:50,000 topographic map. Supervised image processing yielded a test classification map from this sample image containing 12 classes: 5 water depth/sediment classes, 2 shoreline/tidal classes, and 5 coastal land cover classes at a scale of 1:25,000 and with a training set accuracy of 76%. Unsupervised image classification was applied to a subportion of the site analyzed and produced classification maps comparable in results in a spatial sense. The results of this test indicated that it is feasible to produce such quantitative maps for detailed study of dynamic coastal processes given a LANDSAT image data base at sufficiently frequent time intervals

    The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice

    Full text link
    We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a novel bound-spinon state at high energies in the linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.

    Gamma-Rays Produced in Cosmic-Ray Interactions and the TeV-band Spectrum of RX J1713.7-3946

    Full text link
    We employ the Monte Carlo particle collision code DPMJET3.04 to determine the multiplicity spectra of various secondary particles (in addition to π0\pi^0's) with γ\gamma's as the final decay state, that are produced in cosmic-ray (pp's and α\alpha's) interactions with the interstellar medium. We derive an easy-to-use γ\gamma-ray production matrix for cosmic rays with energies up to about 10 PeV. This γ\gamma-ray production matrix is applied to the GeV excess in diffuse Galactic γ\gamma-rays observed by EGRET, and we conclude the non-π0\pi^0 decay components are insufficient to explain the GeV excess, although they have contributed a different spectrum from the π0\pi^0-decay component. We also test the hypothesis that the TeV-band γ\gamma-ray emission of the shell-type SNR RX J1713.7-3946 observed with HESS is caused by hadronic cosmic rays which are accelerated by a cosmic-ray modified shock. By the χ2\chi^2 statistics, we find a continuously softening spectrum is strongly preferred, in contrast to expectations. A hardening spectrum has about 1% probability to explain the HESS data, but then only if a hard cutoff at 50-100 TeV is imposed on the particle spectrum.Comment: 3 pages; 4 figures; Contribution to the First GLAST Symposium, Standord, 200
    • …
    corecore