43,543 research outputs found
Shuttle rocket booster computational fluid dynamics
Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges
Development of a computerized analysis for solid propellant combustion instability with turbulence
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed
Shuttling of Spin Polarized Electrons in Molecular Transistors
Shuttling of electrons in single-molecule transistors with magnetic leads in
the presence of an external magnetic field is considered theoretically. For a
current of partially spin-polarized electrons a shuttle instability is
predicted to occur for a finite interval of external magnetic field strengths.
The lower critical magnetic field is determined by the degree of spin
polarization and it vanishes as the spin polarization approaches 100%. The
feasibility of detecting magnetic shuttling in a -based molecular
transistor with magnetic (Ni) electrodes is discussed [A.~N.~Pasupathy et al.,
Science 306, 86 (2004)].Comment: Submitted to a special issue of "Synthetic Metals" to appear in March
201
SRB combustion dynamics analysis computer program (CDA-1)
A two-dimensional numerical model is developed for the unsteady oscillatory combustion of the solid propellant flame zone. Variations of pressure with low and high frequency responses across the long flame, such as in the double-base propellants, are accommodated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition for the gaseous phase with no condensed phase reaction. Numerical calculations are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The numerical results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges
Magnetic Anisotropy of Isolated Cobalt Nanoplatelets
Motivated in part by experiments performed by M.H. Pan et al. (nanoletters,
v.5, p 83, 2005), we have undertaken a theoretical study of the the magnetic
properties of two-monolayer thick Co nanoplatelets with an equilateral
triangular shape. The analysis is carried out using a microscopic Slater-Koster
tight-binding model with atomic exchange and spin-orbit interactions designed
to realistically capture the salient magnetic features of large nanoclusters
containing up to 350 atoms. Two different truncations of the FCC lattice are
studied, in which the nanoplatelet surface is aligned parallel to the FCC (111)
and (001)crystal planes respectively. We find that the higher coordination
number in the (111) truncated crystal is more likely to reproduce the
perpendicular easy direction found in experiment. Qualitatively, the most
important parameter governing the anisotropy of the model is found to be the
value of the intra-atomic exchange integral J. If we set the value of J near
the bulk value in order to reproduce the experimentally observed magnitude of
the magnetic moments, we find both quasi-easy-planes and perpendicular easy
directions. At larger values of J we find that the easy-axis of magnetization
is perpendicular to the surface, and the value of the magnetic anisotropy
energy per atom is larger. The possible role of hybridization with substrate
surface states in the experimental systems is discussed.Comment: 15 pages, 13 figure
D-brane orbiting NS5-branes
We study real time dynamics of a Dp-brane orbiting a stack of NS5-branes. It
is generally known that a BPS D-brane moving in the vicinity of NS5-branes
becomes unstable due to the presence of tachyonic degree of freedom induced on
the D-brane. Indeed, the D-brane necessarily falls into the fivebranes due to
gravitational attraction and eventually collapses into a pressureless fluid.
Such a decay of the D-brane is known to be closely related to the rolling
tachyon problem. In this paper we show that in special cases the decay of
D-brane caused by gravitational attraction can be avoided. Namely for certain
values of energy and angular momentum the D-brane orbits around the fivebranes,
maintaining certain distance from the fivebranes all the time, and the process
of tachyon condensation is suppressed. We show that the tachyonic degree of
freedom induced on such a D-brane really disappears and the brane returns to a
stable D-brane.Comment: 12 pages, latex, added referenc
Turning to Peers: Integrating Understanding of the Self, the Condition, and Others’ Experiences in Making Sense of Complex Chronic Conditions
People are increasingly involved in the self-management of their own health, including chronic conditions. With technology advances, the choice of self-management practices, tools, and technologies has never been greater. The studies reported here investigated the information seeking practices of two different chronic health populations in their quest to manage their health conditions. Migraine and diabetes patients and clinicians in the UK and the US were interviewed about their information needs and practices, and representative online communities were explored to inform a qualitative study. We found that people with either chronic condition require personally relevant information and use a broad and varied set of practices and tools to make sense of their specific symptoms, triggers, and treatments. Participants sought out different types of information from varied sources about themselves, their medical condition, and their peers’ experiences of the same chronic condition. People with diabetes and migraine expended great effort to validate their personal experiences of their condition and determine whether these experiences were ‘normal’. Based on these findings, we discuss the need for future personal health technologies that support people in engaging in meaningful and personalised data collection, information seeking, and information sharing with peers in flexible ways that enable them to better understand their own condition
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
- …