114,288 research outputs found
Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory
Regularization and renormalization is discussed in the context of low-energy
effective field theory treatments of two or more heavy particles (such as
nucleons). It is desirable to regulate the contact interactions from the outset
by treating them as having a finite range. The low energy physical observables
should be insensitive to this range provided that the range is of a similar or
greater scale than that of the interaction. Alternative schemes, such as
dimensional regularization, lead to paradoxical conclusions such as the
impossibility of repulsive interactions for truly low energy effective theories
where all of the exchange particles are integrated out. This difficulty arises
because a nonrelativistic field theory with repulsive contact interactions is
trivial in the sense that the matrix is unity and the renormalized coupling
constant zero. Possible consequences of low energy attraction are also
discussed. It is argued that in the case of large or small scattering lengths,
the region of validity of effective field theory expansion is much larger if
the contact interactions are given a finite range from the beginning.Comment: 7 page
The Solar Proton Burning Process Revisited In Chiral Perturbation Theory
The proton burning process p + p -> d + e(+) + \nu(e), important for the
stellar evolution of main-sequence stars of mass equal to or less than that of
the Sun, is computed in effective field theory using chiral perturbation
expansion to the next-to-next-to leading chiral order. This represents a
model-independent calculation consistent with low-energy effective theory of
QCD comparable in accuracy to the radiative np capture at thermal energy
previously calculated by first using very accurate two-nucleon wavefunctions
backed up by an effective field theory technique with a finite cut-off. The
result obtained thereby is found to support within theoretical uncertainties
the previous calculation of the same process by Bahcall and his co-workers.Comment: 30 pages, 2 eps files, aaspp4.sty needed, slightly modified, to be
published in Ap.
The Hierarchy Solution to the LHC Inverse Problem
Supersymmetric (SUSY) models, even those described by relatively few
parameters, generically allow many possible SUSY particle (sparticle) mass
hierarchies. As the sparticle mass hierarchy determines, to a great extent, the
collider phenomenology of a model, the enumeration of these hierarchies is of
the utmost importance. We therefore provide a readily generalizable procedure
for determining the number of sparticle mass hierarchies in a given SUSY model.
As an application, we analyze the gravity-mediated SUSY breaking scenario with
various combinations of GUT-scale boundary conditions involving different
levels of universality among the gaugino and scalar masses. For each of the
eight considered models, we provide the complete list of forbidden hierarchies
in a compact form. Our main result is that the complete (typically rather
large) set of forbidden hierarchies among the eight sparticles considered in
this analysis can be fully specified by just a few forbidden relations
involving much smaller subsets of sparticles.Comment: 44 pages, 2 figures. Python code providing lists of allowed and
forbidden hierarchy is included in ancillary file
Solar-neutrino reactions on deuteron in effective field theory
The cross sections for low-energy neutrino-deuteron reactions are calculated
within heavy-baryon chiral perturbation theory employing cut-off regularization
scheme. The transition operators are derived up to
next-to-next-to-next-to-leading order in the Weinberg counting rules, while the
nuclear matrix elements are evaluated using the wave functions generated by a
high-quality phenomenological NN potential. With the adoption of the
axial-current-four-nucleon coupling constant fixed from the tritium beta decay
data, our calculation is free from unknown low-energy constants. Our results
exhibit a high degree of stability against different choices of the cutoff
parameter, a feature which indicates that, apart from radiative corrections,
the uncertainties in the calculated cross sections are less than 1 %.Comment: 12 pages, 3 figures. Error estimation of higher order corrections
detaile
The Solar pp and hep Processes in Effective Field Theory
The strategy of modern effective field theory is exploited to pin down
accurately the flux factors for the and processes in the Sun.
The technique used is to combine the high accuracy established in few-nucleon
systems of the "standard nuclear physics approach" (SNPA) and the systematic
power counting of chiral perturbation theory (ChPT) into a consistent effective
field theory framework. Using highly accurate wave functions obtained in the
SNPA and working to \nlo3 in the chiral counting for the current, we make
totally parameter-free and error-controlled predictions for the and
processes in the Sun.Comment: 5 pages, aipproc macros are included. Talk given at International
Nuclear Physics Conference 2001, Berkeley, California, July 30 - August 3,
200
- âŠ