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Abstract

The cross sections for low-energy neutrino–deuteron reactions are calculated within heavy-baryon chiral perturbation theory
employing a cut-off regularization scheme. The transition operators are derived up to next-to-next-to-next-to-leading order in the
Weinberg counting rules, while the nuclear matrix elements are evaluated using the wave functions generated by a high-quality
phenomenologicalNN potential. With the adoption of the axial-current-four-nucleon coupling constant fixed from the tritium
beta decay data, our calculation is free from unknown low-energy constants. Our results exhibit a high degree of stability against
different choices of the cutoff parameter, a feature which indicates that, apart from radiative corrections, the uncertainties in the
calculated cross sections are less than 1%.
 2003 Elsevier Science B.V.

PACS: 25.30.Pt; 25.10.+s; 25.65.+t; 12.39.Fe

1. Introduction

This Letter is concerned with a theoretical esti-
mation of the cross sections,σνd , for the neutrino–
deuteron reactions

νe + d→ e− + p+ p,
(1)ν̄e + d→ e+ + n+ n (CC),
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νl + d→ νl + p+ n,
(2)ν̄l + d→ ν̄l + p+ n (NC),

where CC and NC stand for the charged-current and
neutral-current reaction, respectively, andl denotes the
lepton flavor(l = e,µ, τ). Recent SNO experiments
[1,2] have provided strong evidence forνe oscillations.
In interpreting the existing and future SNO data,
accurate estimates ofσνd in the solar neutrino energy
region (Eν � 20 MeV) are of great importance.

Recently, two theoretical approaches have been
used for evaluatingσνd. One is a traditional method in
which nuclear electroweak processes are described in
terms of one-body impulse approximation (IA) opera-
tors and two-body exchange-current (EXC) operators
acting on non-relativistic nuclear wave functions. The
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EXC contributions are derived from one-boson ex-
change diagrams [3], while the nuclear wave functions
are obtained by solving the Schrödinger equation in-
volving high-quality realistic nuclear interactions. For
convenience, we refer to this method as the standard
nuclear physics approach (SNPA). The successful ap-
plications of SNPA are well documented in the litera-
ture [4]. A detailed calculation ofσνd based on SNPA
was carried out by Nakamura, Sato, Gudkov and Ku-
bodera (NSGK) [5], and this calculation has recently
been updated by Nakamura et al. (NETAL) [6].2

The second approach is based on effective field
theory (EFT), which has been gaining ground as a
new tool for describing low-energy phenomena in
few-nucleon systems [9–11]. Butler, Chen, and Kong
(BCK) [12] applied EFT to theνd reactions, us-
ing the regularization scheme called the power diver-
gence subtraction (PDS) [13]. Their results agree with
those of NSGK in the following context. The EFT La-
grangian in PDS involves one unknown low-energy
constant (LEC), denoted byL1A, which represents
the strength of axial-current-four-nucleon contact cou-
pling. BCK adjustedL1A to optimize fit to theσνd of
NSGK and found that, after this adjustment, the re-
sults of the EFT and SNPA calculations agree with
each other within 1% over the entire solar-ν energy
region for all of the four reactions in Eqs. (1) and (2).
Furthermore, the best-fit value ofL1A was found to be
of a reasonable magnitude consistent with the “natu-
ralness” argument [12].

The fact that the results of an ab initio EFT calcu-
lation (with one free parameter fine-tuned) are consis-
tent with those of SNPA is considered to give strong
support for the basic soundness of SNPA. At the same
time, it highlights the desirability of an EFT calcula-
tion of σνd free from an adjustable parameter. In this
Letter we describe an attempt toward such a goal. We
employ here a formalism recently developed in the
studies of the solarhep process and the solarpp fu-
sion reaction [14,15]. In this method, invoking heavy-
baryon chiral perturbation theory (HBχPT), we con-
struct transition operators from irreducible diagrams
according to Weinberg’s counting scheme [9]; the
nuclear matrix elements are evaluated by sandwich-
ing the EFT-controlled transition operators between

2 For earlier calculations, see, e.g., [7,8].

the nuclear wave functions that have been obtained
by solving the Schrödinger equation involving high-
quality realistic nuclear interactions. For convenience,
we refer to this EFT-motivated approach as EFT∗. It
is known [14] that, for the present purposes, it is suffi-
cient to consider up to next-to-next-to-next-to-leading
order (N3LO) in HBχPT, and that to this order there
is only one unknown LEC, denoted bŷdR in [15].
Like L1A in [12], d̂R controls the strength of the axial-
current-four-nucleon contact coupling and subsumes
short-distance physics that has been integrated out.
An important point noticed in [15] is that, since the
tritium β-decay rateΓ βt is also sensitive tôdR , we
can determinêdR from the well-known experimental
value ofΓ βt . Onced̂R is determined, we can make a
parameter-free calculation ofσνd , and the purpose of
this communication is to describe such a calculation.3

We shall show that, apart from radiative corrections
for which we refer to the literature [17–19],σνd given
here is reliable with∼ 1% precision.

2. Calculational method

For low-energy processes, we can work with the
current–current interaction:

H = G
′
F√
2

∫
d3�x [

VudJ
(CC)
µ (�x)l(CC)µ(�x)

(3)+ J (NC)
µ (�x)l(NC)µ(�x)],

whereG′
F = 1.1803×10−5 (GeV−2) [20] is the weak

coupling constant, andVud = 0.9746 is the K–M ma-
trix element.G′

F includes the inner radiative correc-
tion: G′2

F = G2
F (1 + ∆VR), whereGF = 1.1166×

10−5 (GeV−2) is the Fermi constant and∆VR is the in-
ner radiative correction [20].4 The CC- and NC-lepton
currents,l(CC)µ and l(NC)µ, are well known; the CC-
and NC-hadronic currents,J (CC)

µ andJ (NC)
µ are writ-

ten as

(4)J (CC)
µ (�x)= V±

µ (�x)−A±
µ(�x),

3 Similar parameter-free calculations have been carried out for
the solarpp-fusion reaction and the solarhep process [15], and for
µ–d capture [16].

4 For more detailed discussion of the radiative correction, see
[6].
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J (NC)
µ (�x)= (

1− 2 sin2 θW
)
V 0
µ(�x)−A0

µ(�x)
(5)− 2 sin2 θWV

S
µ (�x),

where Vµ and Aµ represent the vector and axial
current, respectively. The superscripts,± and 0, are
the isospin indices of the isovector current andS
denotes the isoscalar current;θW is the Weinberg
angle, sin2 θW = 0.2312.

The νd reactions can lead to various values of the
relative orbital angular momentum,L, of the final
two nucleons. We concentrate here, however, on the
L = 0 state (1S0), since it is this partial wave that
involves thed̂R term and since the contributions of
higher partial waves are well understood in terms of
the one-body operators. The contributions fromL� 1
are significant in the upper part of the solar neutrino
energy region,5 but their uncertainty is small enough
to be ignored in the present context.

The one-body (1B) currents can be obtained from
the phenomenological form factors of the weak-
nucleon current.6 The isovector vector and axial-
vector currents are given in momentum space as7

(6)

J
aµ
V (q)= ū(p′) τ

a

2

[
gV (q)γ

µ+ gM(q) iσ
µνqν

2mN

]
u(p),

(7)

J
aµ
A (q)= ū(p′)

τ a

2

[
gA(q)γ

µγ5 + gP (q) q
µ

mµ
γ5

]
u(p),

where ‘a’ is the isospin index,u(p) is the Dirac spinor
for the nucleon, andmµ (mN ) is the muon (nucleon)
mass;gV (q), gM(q), gA(q), andgP (q) are the vector,
magnetic, axial-vector, pseudoscalar form factors, re-
spectively. It is known empirically that the first three
form factors can be parametrized very well in the di-
pole form with the use of effective radii,r2V = 0.59,

5 The L � 1 contributions increaseσνd by ∼ 3.8% at Eν =
20 MeV [6,21].

6 The low-energy structure of the form factors has been studied
in detail within HBχPT [22]. At N2LO, however, we in principle
need to consider off-shell form factors [23], a feature that reflects
arbitrariness in choosing fields [24]. The influence of off-shell
terms, however, should be small at low energies; see, e.g., Ref. [25].
An EFT study of the one-body Gamow–Teller matrix element in the
two-nucleon system [26] explicitly shows that the off-shell effects
are sufficiently small for our present purposes.

7 Since we consider the final1S0 state only, there is no
contribution from the isoscalar current.

r2M = 0.80 andr2A = 0.42 fm2, for gV (q), gM(q) and
gA(q), respectively [27]. We are adopting here the
usual normalization:gV (0)= 1, gA(0)= gA = 1.267,
andgM(0)= κV = 3.706. AlthoughgP (q) is not well
known empirically, it is strongly constrained by chiral
symmetry; an HBχPT calculation up to NNLO [22]
leads to

(8)gP (q)= −2mµfπgπN
q2 −m2

π

− 1

3
gAmµmNr

2
A,

wheregπN = 13.5. In fact, the contribution of thegP
term is tiny in our case. We apply a non-relativistic
expansion of the above expressions and retain terms
up toO(1/m3

N) (corresponding to N3LO of the chiral
order); the details will be described elsewhere [28].

The two-body (2B) current operators are derived
from the chiral LagrangianL, which is expanded as
L = ∑

ν̄ Lν̄ = L0 + L1 + · · ·, whereL0 andL1 are
LO and NLO Lagrangians, respectively. Their explicit
expressions are:

L0 = �N [iv ·D + 2igAS ·∆]N
(9)+ f 2

π Tr

(
−∆ ·∆+ χ+

4

)
,

L1 = 1

2mN
�N

[
(v ·D)2 −D2 + 2gA{v ·∆,S ·D}
− (

8ĉ2 − g2
A

)
(v ·∆)2 − 8ĉ3∆ ·∆

− (4ĉ4 + 1)
[
Sµ,Sν

][∆µ,∆ν]
− 2i(1+ κV )

[
Sµ,Sν

]
f+
µν

]
N

(10)

+ gA

mNf 2
π

[ − 4id̂1�NS ·∆N �NN
+ 2id̂2ε

abcεµναβv
µ

×∆a,ν �NSατbN �NSβτcN]
,

where vµ is the velocity vectorvµ = (1, �0) and
Sµ is the spin operator 2Sµ = (0, �σ). The explicit
expressions of the fields,Dµ, ∆µ, f+

µν , andχ+, are
given in [16], andfπ is the pion decay constant. The
LEC’s, ĉi , have been determined by Bernard et al. at
the tree-level [29];8

ĉ2 = 1.67± 0.09, ĉ3 = −3.66± 0.08,

(11)ĉ4 = 2.11± 0.08.

8 The relation between our dimensionless LEC’s,ĉi ’s, andc’s
used in the literature iŝci =mNci .
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Fig. 1. Diagrams for two-body current operators of orderν = 1 (a), (b) andν = 2 (c)–(f). The wavy lines withV andA attached denote
the vector and axial-vector current, respectively, the dashed line denotes the pion, and vertices without (with) “X” arise from the LO (NLO)
Lagrangian.

The LEC’s of the contact termŝd1,2 will be discussed
later in the text.

We construct 2B transition operators from 2B irre-
ducible Feynman diagrams up to N3LO in Weinberg’s
counting rule [9]. Since the tree-level 2B operators are
higher in chiral counting than the tree-level 1B opera-
tors by two orders, we can limit ourselves to tree dia-
grams for the 2B operators. In addition, since thegP
term is highly suppressed, we do not consider it in the
2B operators.

The diagrams for the 2B operators are given in
Fig. 1. Since we only have nucleons and pions inL,
the effects involving exchange of heavier mesons
such as theσ and ρ mesons are embedded in the
contact term, diagram (f) in Fig. 1. We denote byΛ
a momentum scale below which our nucleon–pion-
only description is expected to be valid. To prevent
the exchanged momentum from surpassingΛ, we
introduce the cutoff functionSΛ(�k) = e−�k2/(2Λ2) in
calculating the Fourier transforms of the 2B transition
operators [15]. As noted in [15], the short-range part
of the 2B contributions can be lumped together into an
axial-current-four-nucleon contact coupling term with
the strengtĥdR , whered̂R = d̂1+2d̂2+ 1

3 ĉ3+ 2
3 ĉ4+ 1

6.

Then, for a given value ofΛ, we can determinêdR

from the empirical value ofΓ βt . The results are [15]:

(12)d̂R = 1.00± 0.07, 1.78± 0.08, 3.90± 0.10,

for Λ= 500, 600, 800 MeV, respectively. The explicit
expressions of the current operators for the CC reac-
tion have been given in [16].9

9 Insofar as the final two-nucleon partial wave is limited tos-
wave, one can use the same expression for the NC reaction (with an
appropriate change in the coefficient of the vector current).

3. The total cross section

The total cross sections are calculated using the
non-relativistic formula

σνd(Eν)

=
∫
dp

∫
dy

1

(2π)3

× 2p2k′2

k′/E′ + (k′ −Eνy)/(2mN)

(13)× F(Z,E′)1
3

∑
spin

|T |2,

with the energy conservation relation valid up to
1/mN ,

md +Eν −E′ − 2mN

(14)− 1

mN

[
p2 + 1

4

(
E2
ν + k′2 − 2Eνk′y

)] = 0,

whereEν (E′) is the energy of the initial neutrino
(final lepton),p is the magnitude of the relative three-
momentum between the final two nucleons,k′ is that
of the outgoing lepton(k′ = |�k′|), andy is the cosine
of the angle between the incoming and outgoing
leptons(y = k̂ν · k̂′). F(Z,E′) is the Fermi function
andmd is the deuteron mass. The transition matrixT
is decomposed asT = T1B + T2B, where T1B and
T2B are the contribution of the 1B and 2B operators,
respectively. These will be evaluated with the use of
the Argonne V18 potential [30].

Since the calculation of T1B is standard [28], we
give here only the explicit expression forT2B:
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1√
4π
T2B

= βχ†
00

�Σχ1md

∫
dr

(15)

×
{

�F6u0(r)j1(qr/2)
y1Λ(r)

r
ud(r)

+ �F7
[
u′

0(r)
(
ud(r)−

√
2wd(r)

)
− u0(r)

(
u′
d(r)−

√
2w′

d(r)
)]

× j0(qr/2)y1Λ(r)

r

+ �F8u0(r)j0(qr/2)
y1Λ(r)

r2
wd(r)

+ �F9u0(r)j0(qr/2)y0Λ(r)ud(r)

+ �F10u0(r)j0(qr/2)y2Λ(r)wd(r)

+ �F11u0(r)δΛ(r)ud(r)

+ �F12

1/2∫
−1/2

dy u0(r)j0(yqr)

×
[
yL0Λ(r)ud(r)

− 2

3
yL1Λ(r)

(
ud(r)+ wd(r)√

2

)]}
,

whereβ = (G′
FVud)

2/2 for CC andβ = G′2
F /4 for

NC. �Σ = �σ1 − �σ2, with �σi being theith nucleon spin
operator;χ1md andχ0,0 are the spin wave functions for
the deuteron and the final two nucleons, respectively.
The radial functionu0 corresponds to the final two-
nucleon s-wave, while ud and wd are thes-wave
andd-wave radial functions of the deuteron;jL(qr/2)
is the spherical Bessel function;qµ is a momentum
transfer between the currents,qµ = k′µ − kµ andq =
|�q|. Furthermore,

�F6 = −gA
f 2
π

v ·J q̂ − gA(1+ κV )
2mNf 2

π

i �q × (q̂ × �J )

− gA

4mNf 2
π

�q · �J q̂,

�F7 = −gA
6mNf 2

π

�J , �F8 = −gA√
2mNf 2

π

�J ,

�F9 = −2gAm2
π

(
ĉ3 + 2ĉ4 + 1

2

)
3mNf 2

π

�J ,

�F10 = 2
√

2gAm2
π

(
ĉ3 − ĉ4 − 1

4

)
3mNf 2

π

�J ,

�F11 = 2gAd̂R

mNf 2
π

�J ,

(16)�F12 = −1

2

(
gA

fπ

)2

i(�q × �J ),

whereJ µ is the lepton current in momentum space,
and

δΛ(r)=
∫
d3�k
(2π)3

ei
�k·�rS2

Λ(
�k),

(17)y0Λ(r)=
∫
d3�k
(2π)3

ei
�k·�r S2

Λ(
�k)

�k2 +m2
π

,

and y1Λ = −r d
dr
y0Λ(r), y2Λ = r

m2
π

d
dr

[1
r
d
dr
y0Λ(r)

]
;

yL0,1Λ(r) is obtained by exchanging the pion mass

mπ to L = √
m2
π + (1/4− y2)�q2 in Eq. (17). In the

above expression we have neglected the small terms
proportional toq2.

4. Numerical results and discussion

As mentioned, we consider in this Letter the con-
tribution from the final two-nucleons-wave only. The
corresponding total cross section is denoted byσL=0

νd .
Table 1 givesσL=0

νd calculated in EFT* for the four re-
actions in Eqs. (1) and (2).

The results in Table 1 correspond to the case
with Λ = 600 MeV, and we now discuss the cutoff
dependence. In Figs. 2 and 3 we plot the ratio,ξ ≡
σ1B+2B/σ1B, whereσ1B+2B representsσL=0

νd obtained
with both the 1B and 2B currents included whileσ1B
representsσL=0

νd obtained with the 1B current alone.
Fig. 2 givesξ for CC (νd→ epp), while Fig. 3 shows
ξ for NC (νd → νnp). The three lines in each figure
correspond to different choices ofΛ. As can be seen
from the figures,σL=0

νd exhibits extremely smallΛ
dependence, with only 0.02% changes over a wide
range of physically reasonable values ofΛ (Λ= 500–
800 MeV).

We now briefly discuss estimation of higher chiral-
order effects. The expansion parameter here isQ/Λ,
whereQ is the pion massmπ or the typical external
momentum scaleQext, andΛ is the chiral scale cutoff,
Λ ≈ 600 MeV. It is common to assumeQext ∼ mπ ,
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Table 1
The total cross sectionσL=0

νd
(in units of 10−42 cm2) for the νd

reaction leading to the final two-nucleons-state. For each of the four
reactions in Eqs. (1) and (2),σL=0

νd calculated in EFT* is shown as
a function of the incident neutrino energyEν (MeV). For the cutoff
parameter,Λ= 600 MeV has been used

Eν νd→ e−pp ν̄d→ e+nn νd→ νnp ν̄d→ ν̄np

2 0.004 0 0 0
3 0.047 0 0.003 0.003
4 0.158 0 0.031 0.031
5 0.348 0.029 0.096 0.094
6 0.625 0.120 0.204 0.198
7 0.996 0.284 0.357 0.346
8 1.463 0.525 0.558 0.538
9 2.030 0.846 0.808 0.774

10 2.697 1.247 1.106 1.054
11 3.468 1.727 1.455 1.378
12 4.342 2.286 1.853 1.746
13 5.321 2.922 2.302 2.157
14 6.405 3.633 2.800 2.610
15 7.596 4.418 3.349 3.104
16 8.892 5.274 3.947 3.638
17 10.29 6.200 4.594 4.212
18 11.80 7.194 5.291 4.824
19 13.41 8.252 6.036 5.474
20 15.13 9.374 6.830 6.161

Fig. 2. The ratioξ for CC defined in the text. The results for
three different choices ofΛ are plotted. The vertical bars represent
changes inξ asd̂R is varied within a range allowed by the existing

experimental errors inΓ βt ; the representative results obtained for
Λ= 600 MeV are shown for three values ofEν .

but Qext in our case is the incident neutrino energy
Eν , whose maximum value isEmax

ν ∼ 20 MeV; thus
Emax/Λ ∼ 0.03� 0.23� mπ/Λ. The actual numer-
ical behavior of the chiral expansion in the present
case may be typified by the results for the CC reac-
tion (νd → e−pp) at Eν = 20 MeV. As far as the

Fig. 3. The ratioξ for NC defined in the text. See also the caption
for Fig. 2.

1B operators are concerned, the contribution toσL=0

of the LO terms amounts to 88.5%, while the cor-
rections due to the NLO, N2LO and N3LO terms are
8.8%,−0.5% and∼ 0.001%, respectively. As for the
2B operators, the N2LO terms give a∼ 0.3% cor-
rection, whereas the N3LO terms give a∼ 2.9% cor-
rection. Thus, the overall behavior is consistent with
convergence with respect to the expansion parameter,
mπ/Λ; the rather conspicuous 2.9% correction of the
N3LO 2B terms is comparable to(mπ/Λ)3 � 1.2%,
while the other terms are decreasing faster (almost in
powers ofEmax

ν /Λ.). Therefore a possible measure
of corrections due to N4LO or higher-order terms is
2.9%× (mπ/Λ)∼ 0.6%.

The convergence property, however, can in fact be
better than this. Since in our approach the overall
strength,d̂R, of the 2B operator is adjusted to repro-
duceΓ βt , the bulk of higher order corrections have al-
ready been effectively taken into account. In particu-
lar, the chiral-symmetry breaking terms (proportional
to mπ ) give energy-independent contributions, which
are essentially incorporated into the effectived̂R. The
derivative terms acting on the wavefunctions or the
two-body operators may pick up the pion mass scale,
but their effects at the tritiumβ-decay energy are again
essentially subsumed in̂dR . The remaining pieces of
higher-order contributions areEν-dependent effects,
and hence they are likely to be controlled by the para-
meterEν/Λ rather thanmπ/Λ. From this viewpoint it
seems reasonable to adopt 2.9%× (Emax/Λ) ∼ 0.1%
as a measure of the higher-order corrections. Another
measure of convergence is obtained as follows. A tenet
of a cutoff EFT (such as used here) demands that, pro-
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vided a large enough number of terms are included in
chiral expansion, the calculational results should be in-
dependent of choices of the cutoff parameterΛ (within
a reasonable range). Thus, the sensitivity of the calcu-
latedσL=0

νd to Λ serves as an indicator of the impor-
tance of the contributions of the neglected higher or-
der terms. This sensitivity, however, has been found to
be extremely small (0.02% variation) in our case.

Although the above discussion suggests that higher-
order effects (N4LO or higher) are reassuringly small,
we make a brief comment on three-body (3B) op-
erators, which represent a particular class of higher-
order contributions. It is known (see Table 1 of the
last article in Ref. [15]) that, at N4LO, there is a con-
tribution to the GT transition from the 3B-operator,
which we denote here byOGT(3B). Obviously, al-
thoughOGT(3B) contributes toΓ βt , it plays no role
in the two-nucleon systems. At N4LO, therefore, in
renormalizing d̂R with the use ofΓ βt , one would
need to subtract the contribution ofOGT(3B). For-
mally speaking, our present treatment is free from this
complication, since both the determination ofd̂R and
the calculation ofσνd are carried out within N3LO.
However, to the extent that̂dRadjusted to reproduce
Γ
β
t effectively includes higher order contributions, the

above-mentioned subtraction is still needed. Although
a full solution of this problem would require a system-
atic N4LO calculation, it is reasonable to expect that
the contributions of the 3B operators, and hence the
uncertainties due to them also, lie within the above-
discussed overall range of higher-order effects.

These considerations lead to the estimation that the
corrections due to the N4LO or higher-order terms
should be of the order of∼ 0.1%. We also note
that, within SNPA, the 3B contribution toΓ βt was
calculated explicitly and found to be negligibly small
compared with the leading 2B terms [31].

Figs. 2 and 3 also show the uncertainty inξ due
to the finite precision with whichd̂R can be fixed
fromΓ βt . In fact, the largest uncertainty in our present
calculation comes from this origin, and yet it only
amounts to∼ 0.5% ambiguity inξ . Based on these
observations, we consider it safe to conclude that
σL=0
νd ’s calculated here are reliable at the∼ 1% level.

Comparison of our EFT* results with those of the
latest SNPA calculation by NETAL [6] has already
been described in [6]. We therefore only mention here

that σL=0
νd in Table 1 agrees withσL=0

νd of NETAL
within 1% accuracy (see Table 4 in [6]). As discussed,
to the chiral order we are concerned with,σL�1

νd

calculated in EFT* should agree with that obtained in
SNPA. Thereforeσνd(including all final partial waves)
in EFT* can be identified, within 1% accuracy, with
σνd given in NETAL [6].

There have been attempts to directly apply EFT
to nuclear systems with mass numberA � 3 [10,32].
Here, “directly” means that the nuclear wave functions
are obtained in the framework of EFT instead of using
phenomenological potentials. It will be interesting to
employ this “direct” EFT approach for determiningd̂R

(orL1A) fromΓ βt and use the resulting value ofd̂R for
recalculatingσνd .

To summarize, we have carried out an EFT* cal-
culation (up to N3LO) to estimateσL=0

νd , the cross
sections of theνd reactions leading to the final two-
nucleons-wave state. Our results agree, within 1% ac-
curacy, with those of the most recent SNPA calcula-
tion reported in [6]. In addition, we have found that
the calculatedσL=0

νd exhibits very small cut-off de-
pendence (only∼ 0.02% variation). The corrections
due to higher chiral order terms are estimated to be of
the order of∼ 0.1%. The prime uncertainties in the
calculatedσL=0

νd stem from the experimental errors in

Γ
β
t ; this uncertainty, however, is less than∼ 0.5%. We

therefore conclude that, apart from the radiative cor-
rections for which we refer to the literature, the uncer-
tainties in the calculatedσL=0

νd are less than 1%.
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